

#### Lecture 11

Design of Mobile Applications & Services: HCI Issues

Mobile Business II (SS 2016)

Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business & Multilateral Security Goethe University Frankfurt a. M.





- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
  - Understanding Users
  - Developing Prototype Designs
  - Evaluation
- Example of Enhanced App Store

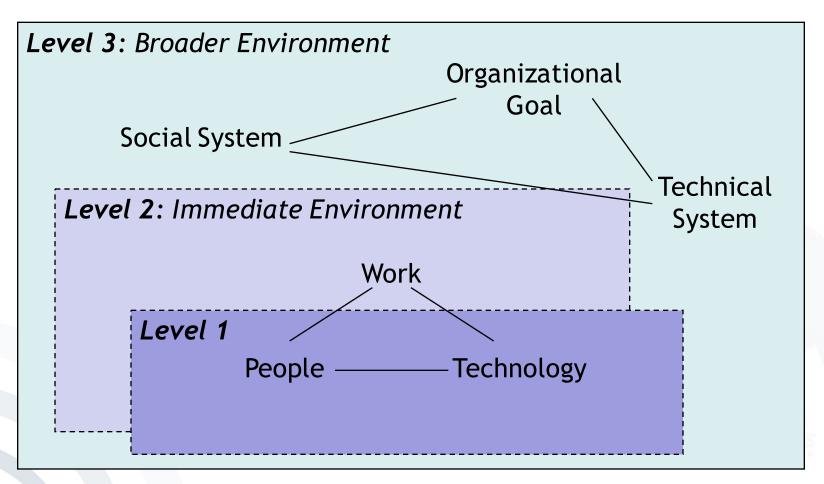




"Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them."

[Hewett et al. 1992]

"Human-computer interaction is the scientific study of


the interaction between people, computers, and the work environment."

[Beard and Peterson 1988]





#### Focus of HCI



[Based on Preece et al. 1994]



## Definition of Usability

According to ISO 9241-11:1998-03, usability is

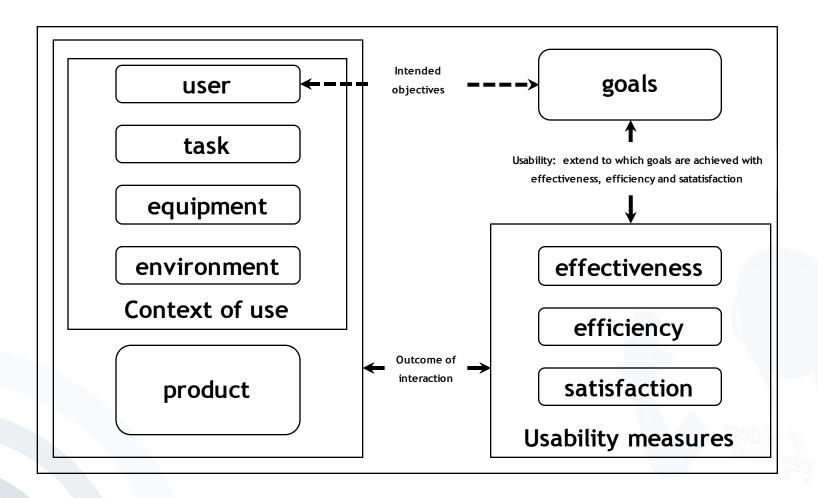
"Extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use."

Source: Ergonomic requirements for office work with visual display terminals (VDTs)

Part 11: Guidance on usability (ISO 9241-11:1998-03)



# Elements of the Usability Definition


- effectiveness: Accuracy and completeness with which users achieve specified goals.
- efficiency: Resources expended in relation to the accuracy and completeness with which users achieve goals.
- satisfaction: Freedom from discomfort, and positive attitudes towards the use of the product.
- context of use: Users, tasks, equipment (hardware, software and materials), and the physical and social environments in which a product is used.
- user: Person who interacts with the product.
- goal: Intended outcome.
- task: Activities required to achieve a goal.
- product: Part of the equipment (hardware, software and materials) for which usability is to be specified or evaluated.

Source: Ergonomic requirements for office work with visual display terminals (VDTs)

Part 11: Guidance on usability (ISO 9241-11:1998-03)

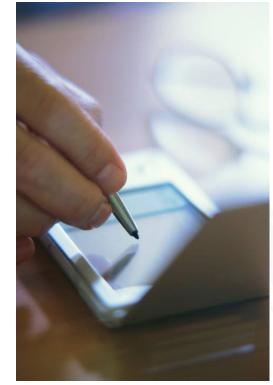


## **Usability Framework**



Source: ISO 9241-11:1998-03




- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
  - Understanding Users
  - Developing Prototype Designs
  - Evaluation
- Example of Enhanced App Store



## Mobile Interaction Styles

The interaction between users and mobile devices is multidimensional.

- Text entry
- Speech input
- Menu navigation
- MultiTouch
- Earcons
- Metaphors



[Love 2005]



## Mobile Interaction Styles: Text Entry

#### Possible interaction via text entry:

- Keyboard entry
- Touch screen
  - Recognition of handwriting
  - Palm-Graffiti
  - Virtual keyboard
  - Swype
- Tegic T9
- Octave
- **-** ...

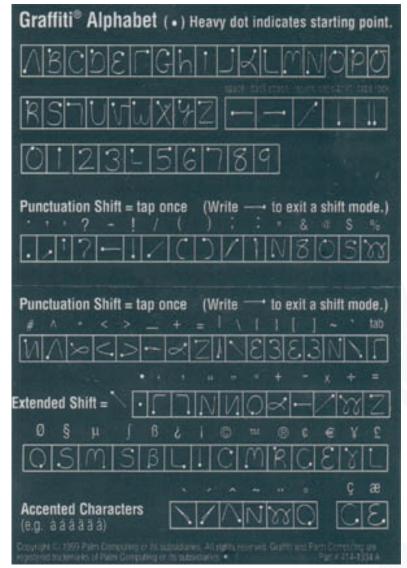


## Mobile Interaction Styles: Text Entry - Keyboard

- Text entry via classic keyboard solution.
- For higher mobility, keyboards become foldable and virtual.






[iBIZ Technology Corp]

Adaptation of a traditional text entry concept



## Mobile Interaction Styles: Text Entry - Touch Screen

- Handwriting recognition software
- Artificial script, based on upper-case characters
- Can be drawn blindly with a stylus on a touch-sensitive panel



[Source: Palm Inc.]



## Mobile Interaction Styles: Text Entry - Touch Screen - Virtual

- Virtual keyboard on the screen
- Can be used with a stylus or with fingers



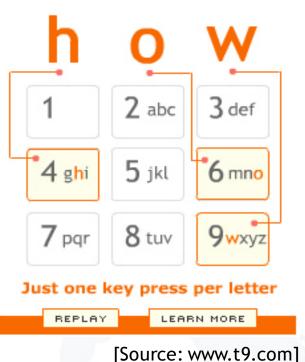
keyboard

[Source: HTC Inc.]



## Mobile Interaction Styles: Text Entry - Swype

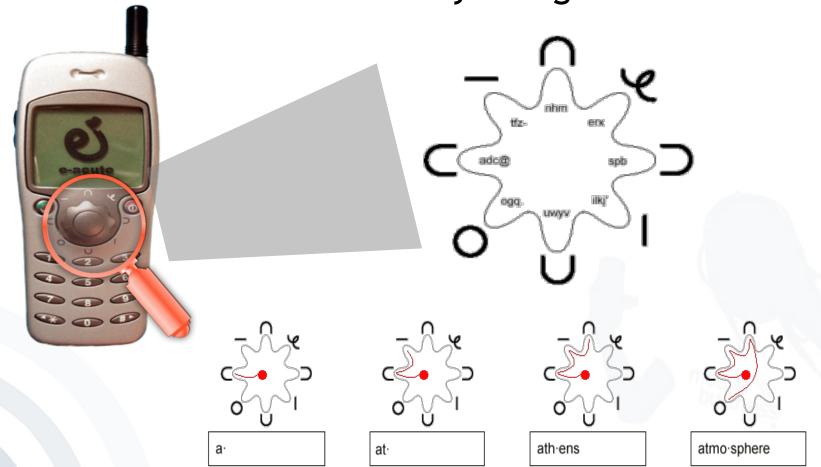
- Swype is an input method for touch screens developed by Swype Inc.
- Available on Samsung, HTC, and also on Android and Symbian.
- Three major components: An input path analyzer, word search engine with corresponding database, and a manufacturer customizable interface.
- Available on >40 languages.




[Source: http://swypeinc.com/]



### Mobile Interaction Styles: business Text Entry - Tegic Communications T9


- T9 (Text on 9 keys) is a predictive text technology developed by Tegic Communications.
- Widely used by: LG, Samsung, Nokia, Siemens, Sony Ericsson, Sanyo
- Uses a dictionary of words, which is used to look up all the possible words, corresponding to the sequence of keys pressed.
- Available in 27 languages





## Mobile Interaction Styles: Text Entry - Octave

Text can be entered via key navigation





## Mobile Interaction Styles: Speech Input

- Speech input relies on speech recognition technologies used by the mobile application.
  - Speaker-dependent
     Recognition technologies
     "learns" from a set of sample
     words spoken by the user
     (system training).
  - Speaker-independent
     Pre-defined vocabulary that has been set up by a large number of speech samples.





## Mobile Interaction Styles: Menu Navigation

- Mobile phone applications usually have a hierarchically structured navigation menu providing a list of menu choices.
- Menu hierarchies are often not self-explanatory (switching costs for users).
- Long menu lists can overload the users' short-term memory.

## connect your memory card to a computer

You can use a cable connection to access your phone's memory card with a PC.

**Note:** When your phone is connected to a computer, you can only access the memory card through the computer.

#### On your phone:

**Disconnect the cable** from your phone, if it is connected, then press  $| \hat{\Phi} \rangle > | \mathbb{S} | \mathbb{S} |$  Settings

- > Connection > USB Settings > Default Connection
- > Memory Card.

This directs the USB connection to your memory card.

[Source: Motorola]



### Mobile Interaction Styles: Touch Screen - Multi-touch

- Input by using gestures
- Up to three (or more) fingers simultaneously



[Source: Wikipedia]



## Mobile Interaction Styles: Earcons

- Earcons are abstract musical tones that produce sound messages to represent parts of an interface.
- Event-driven:
  - Incoming text messages
  - Alarm clock
  - **-** ...
- Menus augmented with earcons can support user navigation.





## Mobile Interaction Styles: Metaphors

- Interface metaphors work by applying prior knowledge from a familiar to a new domain.
- Goal: Reducing people's perception of the complexity of the device used.





[Source: Nokia]



- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
  - Understanding Users
  - Developing Prototype Designs
  - Evaluation
- Example of Enhanced App Store



## Mobile Interaction Design

#### Main activities of effective interaction design

#### **Understanding users**

(Capabilities and limitations)

#### Developing prototype designs

(Demonstration of proposed interaction design)

#### **Evaluation**

(Identification of strengths and weaknesses of a design)



- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
  - Understanding Users
  - Developing Prototype Designs
  - Evaluation
- Example of Enhanced App Store



## Mobile Interaction Design: Understanding Users (1)

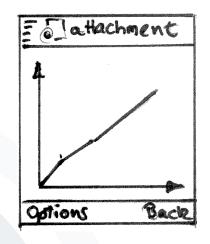
- For an effective interaction design, it is necessary to understand potential users of a system.
- Possible methodologies
  - Field studies (observe and probe a particular group in situations of interest)
  - Laboratory experiments (observe and probe a particular group within a controlled environment)
  - Direct questionnaire (e.g. to validate impressions and interpretations from the field)

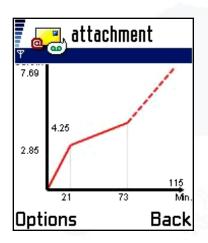


## Mobile Interaction Design: Understanding Users (2)

- The user group needs to have a significant impact on the design process.
- User-centered service design can significantly affect the user's perception of mobile devices and services.
- Examples of user characteristics:
  - Spatial ability: dealing with spatial relations and visualization of spatial tasks
  - Verbal ability: comprehend spoken or written words
  - Working memory:
     limited capacity of short-term memory
  - Previous experience:
     user's experience with an actual interface used

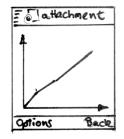



- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
  - Understanding Users
  - Developing Prototype Designs
  - Evaluation
- Example of Enhanced App Store




## Mobile Interaction Design: Developing Prototype Designs (1)

- HCI-Prototypes are built in order to express a design idea as quickly as possible.
- One can differentiate how closely a prototype resembles the appearance of the final product.


[Jones and Marsden 2006]

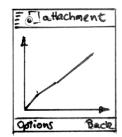






## Mobile Interaction Design: Developing Prototype Designs (2)

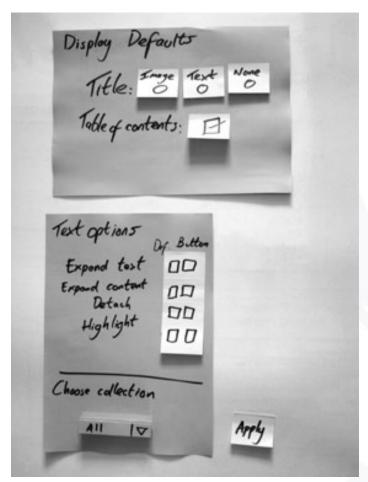



#### Low-fidelity

The prototype uses materials different to those in the final incarnation.

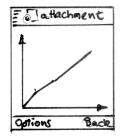
- Check for inconsistency
- Give a common specification for the design team
- Afford reflection
- Check interaction scenarios




## Mobile Interaction Design: Low-Fidelity Prototype Designs (1)



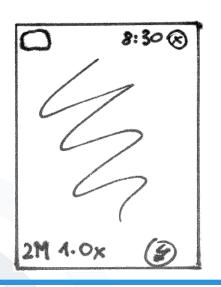
#### **Basic Layouts**

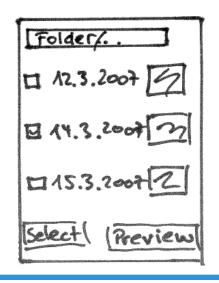


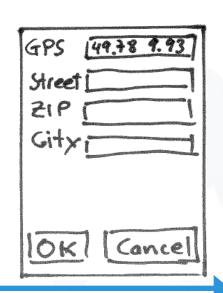

[Source: www.wiley.com/go/mobile]






## Mobile Interaction Design: Low-Fidelity Prototype Designs (2)





### **Self-Checking**

Building a low-fidelity prototype for testing the feasibility of ideas.

#### Example:







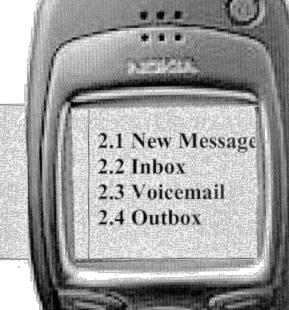
Take pictures

Choose a picture

Get location via GPS or manual input



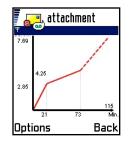
## Mobile Interaction Design: Low-Fidelity Prototype Designs (3)




### **Interaction Prototyping**

Building a low-fidelity prototypes for considering how someone will interact with the device. [Jones and Marsden 2006]

Example:


- 1. Phonebook
- 2. Messages
- 3. Tools
- 4. Configuration



- 4.1 Personalize
- 4.2 Ring Styles
- 4.3 Headset
- 4.4 Network

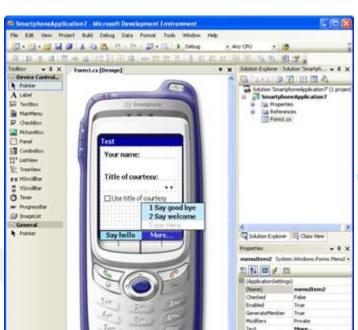


## Mobile Interaction Design: High-Fidelity Prototype Designs (1)



### **High-Fidelity Prototype Designs**

- The results of a low-fidelity prototyping process comprise a list of features that should be tested with representatives of the target group.
- High-fidelity prototype designs provide the functionality to evaluate critical tasks and functionalities that should be supported by the final product.
- Therefore, most critical features must be identified to be included in the prototype design.




## Mobile Interaction Design: High-Fidelity Prototype Designs (2)



### PC-based prototype designs ...

... can be developed by using standard programming environments (e.g. Visual Studio) and software emulators.



Certificates

3 def 6 mno



## Mobile Interaction Design: High-Fidelity Prototype Designs (3)



### Platform-specific prototype designs ...

... can provide a proof-of-concept and can be used for evaluations.









Take pictures

Choose a picture

Get location via GPS or manual input

[Fritsch et al. 2005]



## Mobile Interaction Design: Key Issues in HCI Prototyping

| Туре          | Advantages                                                                                                                                                                                   | Disadvantages                                                                                                                                                                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low-fidelity  | <ul> <li>Less time</li> <li>Lower costs</li> <li>Evaluate multiple concepts</li> <li>Useful for communication</li> <li>Address screen layout issues</li> </ul>                               | <ul> <li>Little use for usability test</li> <li>Navigation and flow limitation</li> <li>Facilitator driven</li> <li>Poor detail in specification</li> </ul>                               |
| High-fidelity | <ul> <li>Partial functionality</li> <li>Interactive</li> <li>User-driven</li> <li>Clearly defined navigation scheme</li> <li>Use for exploration and test</li> <li>Marketing tool</li> </ul> | <ul> <li>Creation time-consuming</li> <li>Inefficient for proof-of-concept</li> <li>Blinds users for major representational flaws</li> <li>Users may think prototype is 'real'</li> </ul> |

[Source: Jones and Marsden 2006]



- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
  - Understanding Users
  - Developing Prototype Designs
  - Evaluation
- Example of Enhanced App Store



### Mobile Interaction Design: Evaluation (1)

#### Why evaluation?

- Understanding how users will use the design in the real world,
- Comparing different prototype designs,
- Assessing whether the product to be developed meets usability requirements, and
- Ensuring that the product conforms to industry standards.
  [Love 2005]



# Mobile Interaction Design: Evaluation (2)

- The evaluation of HCI prototype designs can be based on different methodologies addressing different aspects, e.g.:
  - Direct observation
  - Interviews
  - Questionnaires
  - Experiments
  - ...



# Mobile Interaction Design: Evaluation (3)

#### **Direct observation**

Observe or video users how they use the HCI design, e.g. in order to check:

- the intuitive and correctly usage of design by the users,
- ability of users to manage pre-defined tasks.
- Conducted by: End-Users
- Equipment: Interactive prototype
- Results: Qualitative
- Where: Controlled setting



# Mobile Interaction Design: Evaluation (4)

#### **Interviews**

- Often made in conjunction with observations,
- Provision of direct feedback from the users,
- Observed problems can be addressed.
  - Conducted by: End-Users
- Equipment: Interactive prototype
- Results: Qualitative
- Where: Controlled setting



# Mobile Interaction Design: Evaluation (5)

#### Questionnaires

- Tool for gathering users' opinions,
- Tool for comparing different designs by using quality scales,
- Example: "I was able to enter text easily" Disagree [1] [2] [3] [4] [5] Agree
- Conducted by: End-Users
- Equipment: Interactive prototype & Questionnaire
- Results: Qualitative & Quantitative
- Where: Anywhere



# Mobile Interaction Design: Evaluation (6)

#### **Experiments**

- Usually hypothesis-based
   (e.g., 'Navigation within application A is quicker than within application B.')
- Results provide insight how much 'better' a certain design is.
- Conducted by: End-Users
- Equipment: Interactive prototype
- Results: Quantitative
- Where: Usually laboratory-based



## Mobile Interaction Design: Evaluation (7)

- Design shortcomings of products can have different reasons, such as:
  - A lack of user-based evaluation during the design process,
  - Perceived financial costs of better design,
  - An overemphasis on technology over purpose.

[Love 2005]



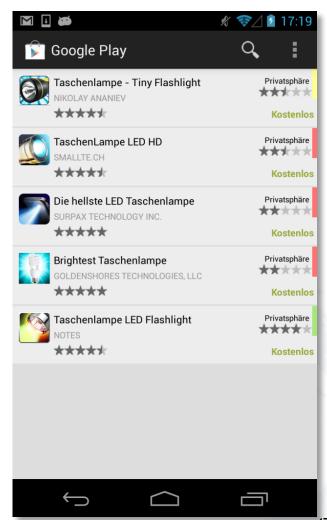
- Introduction to HCI
- Mobile Interaction Styles
- Mobile Interaction Design
  - Understanding Users
  - Developing Prototype Designs
  - Evaluation
- Example of Enhanced App Store



# Privacy Enhanced App Store Motivation

- Enhance privacy transparency and privacy awareness in app markets.
- ✓ Foster informed choice of apps.
- ✓ Integrate more effective privacy risk indicators into app markets.
- ✓ Develop and evaluate proof of concept for Google's Play Store.






### Privacy Enhanced App Store Privacy Indicators

1. Search results enhanced with privacy score.

2. App description enhanced with visual privacy information.

3. App description enhanced with textual privacy information.





### Privacy Enhanced App Store Privacy Indicators

1. Search results enhanced with privacy score.

2. App description enhanced with visual privacy information.

3. App description enhanced with textual privacy information.





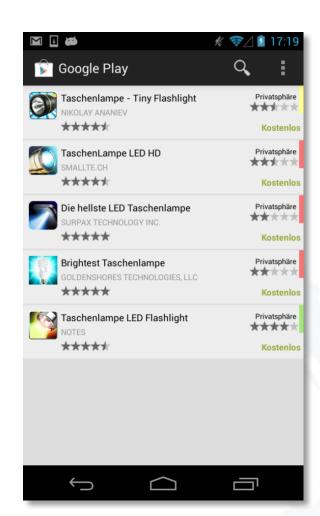
#### Privacy Enhanced App Store Privacy Indicators

1. Search results enhanced with privacy score.

2. App description enhanced with privacy information.

3. App description enhanced with textual privacy information.






#### Privacy Enhanced App Store Conclusion

- Result of an experimental user study: better privacy risk communication leads to:
  - increased privacy and risk awareness,
  - better comprehension of risks,
  - better comparison of apps,
  - privacy as a stronger decision factor,

safer app choices.





#### Literature



- Beard, J. and Peterson (1988)
   A Taxonomy for the Study of Human Factors in Management Information Systems, in: J. Carey (Ed.) Human Factors in Management Information Systems, Greenwich, CT, Ablex Publ., pp. 7-26
- Blattner, M.M.; Sumikawa, D.A. and Greenberg, R.M. (1989)
  Earcons and Icons: Their Structure and Common Design Principles, Human-Computer Interaction (4:1), pp. 11-44
- Dunlop, M.D; Morrison, D.; McCallum, S.; Ptaskinski, P.; Risbey, C. and Stewart, F. (2004) Focussed palmtop information access combining starfield displays and profile-based recommendations, Proceedings of workshop on Mobile and Ubiquitous Information Access, LNCS v2954, pp. 79-89
- Fritsch, L.; Stefan, K. and Grohmann, A. (2005)

  Mobile Gemeinschaften im E-Government: Bürger-Verwaltungs-Partnerschaft als Mittel zur Kosteneffizienz und Effizienz bei öffentlichen Aufgaben am Beispiel der Verkehrskontrolle, Proceedings of the Workshop on Gemeinschaften in Neuen Medien, Dresden
- Hewett, Baecker, Card, Carey, Gasen, Mantei, Perlman, Strong and Verplank (1992)
   ACM SIGCHI Curricula for Human-Computer Interaction, http://sigchi.org/cdg/cdg2.html
- Jones, M. and Marsden, G. (2006)
   Mobile Interaction Design, John Wiley, Chichester, UK.
- Love, S. (2005)
   Understanding Mobile Human-Computer Interaction, Information Systems Series, Elsevier, Oxford, UK.
- Milic-Frayling, N.; Sommerer, R.; RoddenK. and Blackwell, A. (2004)
   SearchMobil: Web Viewing and Search for Mobile Devices, Proceedings of the 12th International World Wide Web Conference, Budapest.
- Preece, J. (1994)
   Human-computer interaction, Reprinted, Addison-Wesley Publ. Co, Wokingham, UK