

Lecture 12

#### Evaluation of Mobile Application & Service Designs

#### Mobile Business II (SS 2016) Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business & Multilateral Security Goethe University Frankfurt a. M.





Agenda

- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion





- Evaluation of application and service designs is difficult since such evaluations address objects that currently exist as concepts or prototypical implementations only.
- Therefore, design evaluations represent *ex ante* evaluations of IT investments into corresponding technologies.
- Consequently, design evaluation addresses the potential value of IT design deployments

[Davern and Kauffman 2000]



- The selection of appropriate evaluation methods needs to be matched with the application or service design.
- For example, descriptive evaluation methods are appropriate for especially innovative designs for which other (e.g. quantitative) evaluation approaches may not be feasible.
- The goodness and efficacy of designs can be rigorously demonstrated via well-selected evaluation methods.

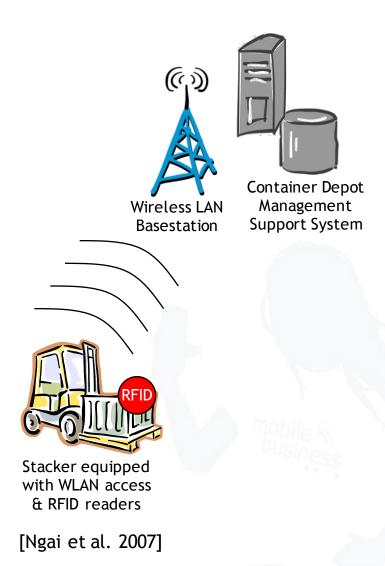


#### **Design Evaluation Methods**

| Observational | I Case study Studies artifact in depth in business environment |                                                                                                                             |  |  |  |  |
|---------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|               | Field study                                                    | Monitors use of artifact in multiple projects                                                                               |  |  |  |  |
| Analytical    | Static analysis                                                | Examines structure of artifact for static qualities (e.g. complexity)                                                       |  |  |  |  |
|               | Architecture analysis                                          | Studies how artifact fits into technical IS architecture                                                                    |  |  |  |  |
|               | Optimization                                                   | Demonstrates inherent optimal properties of artifact or provides optimality bounds on artifact behavior                     |  |  |  |  |
|               | Dynamic analysis                                               | Studies artifact in use for dynamic qualities (e.g. performance)                                                            |  |  |  |  |
| Experimental  | Controlled<br>experiment                                       | Studies artifact in controlled environment for properties (e.g. usability)                                                  |  |  |  |  |
|               | Simulation                                                     | Executes artifact with artificial or historical data                                                                        |  |  |  |  |
| Testing       | Functional (black box) testing                                 | Executes artifact interfaces to discover failures and identify defects                                                      |  |  |  |  |
|               | Structural (white box) testing                                 | Performs coverage testing of some metric (e.g. execution paths) in the artifact implementation                              |  |  |  |  |
| Descriptive   | Informed argument                                              | Uses information from the knowledge base (e.g. relevant research) to build a convincing argument for the artifact's utility |  |  |  |  |
|               | Scenarios                                                      | Scenarios: Construct detailed scenarios around the artifact to demonstrate its utility                                      |  |  |  |  |
|               |                                                                |                                                                                                                             |  |  |  |  |



## Agenda


- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion



# mobile business

#### Example 1: An Integrated RFID-based Mobile Logistics System Design

- The <u>Container Depot Management</u> <u>Support System</u> (CDMSS) is designed to support a container depot using RFID and mobile communication technologies.
- Containers are automatically identified by the stackers via RFID tags, and stackers continuously communicate with the CDMSS via WLAN.
- Real-time visibility of container positions enables operators to process containers more quickly and efficiently.



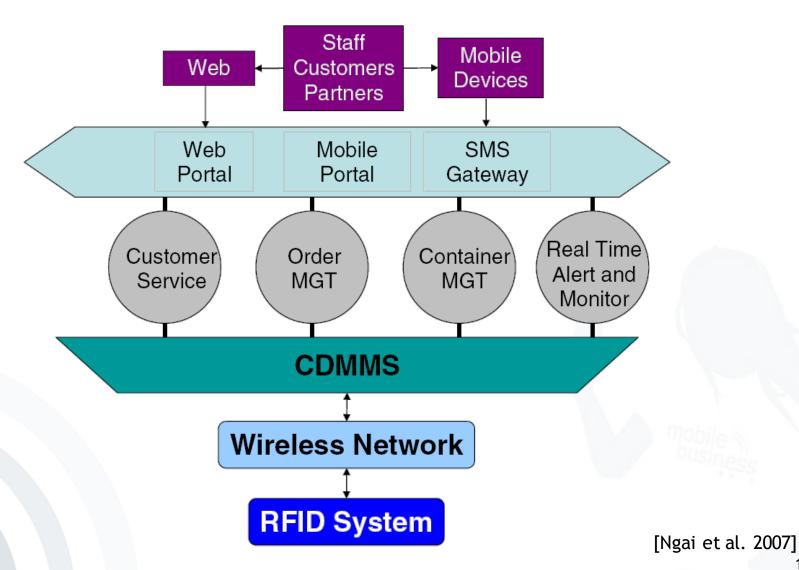


# Evaluation Approach: Case Study (1)

 The integrated RFID-based system design is evaluated by conducting a case study.

| Observational | Case study | Studies artifact in depth in business environment |
|---------------|------------|---------------------------------------------------|
| Field study   |            | Monitors use of artifact in multiple projects     |

- A case study is "an empirical enquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident".
- As case study company a container depot located in Hong Kong was chosen (Container System Ltd. with a size of 21,000m<sup>2</sup>).
- This company operates a traditional computer information system, which does not support mobile communication technologies so far. [Ngai et al. 2007]


# mobile business

With the current system infrastructure, the container depot is facing several problems:

- Limitations of Walkie-Talkie communication system used
- Container misplacement
- Ownership of containers not clear
- Dependence on experienced staff
- Inefficiency in the search for containers
- Can the RFID-based system design solve these problems?



#### System Architecture



10

- Benefits Identified by the Case Study
- Increased container utilization (due to automated management and localization of containers)
- Increased operational efficiency (technology-controlled support of previously labor-intensive processes)
- Better quality control and customer services (e.g. enhanced data analyses, real-time tracking and alerting services)
- Reduced return and pickup lead-times, and costs (reduced waiting times of trucks increases the capability of the existing infrastructure)
- Improved service quality and profitability (real-time status reports available, frequently and less frequently used container types, i.e. infrastructural bottle-necks can be identified)







#### Some Challenges identified by the Case Study

- Material issues: metal containers can reflect radio waves.
- Electromagnetic interferences: Multiple sources of electromagnetic interference
- Business process issues: Implementing an RFIDbased system can demand for fundamental redesign of business processes.
- Applet Viswer: cdsmt.CDSMS ... 
  Applet

  Applet

  Container Information

  Vrae: Frastward Costiner Ltd

  Satus: Pepaired

  Data in: 12-07-2004
- Container Target Position

   ×
   ×
   Z

   3
   ×
   Z

   Car Current Position

   ×
   ×

   2
   2
- Security issues: RFID usage could cause omnipresent surveillance



#### Agenda



Introduction

mobile business

- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion



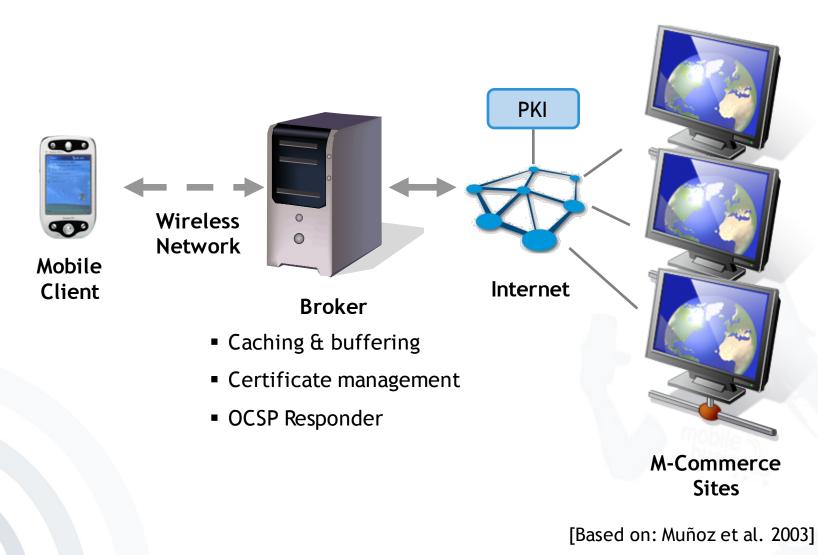
#### Example 2: Secure M-Commerce Transactions

- For conducting secure mobile transactions, an end-toend authenticated and private channel is required.
- Corresponding protocols (e.g. HTTPS) are based on Identity Certificates, whose validity needs to be checked.



- "The Online Certificate Status Protocol (OCSP) enables applications to determine the (revocation) state of an identified certificate." [Myers et al. 1999]
- "OCSP client issues a status request to an OCSP responder and suspends acceptance of the certificate in question until the responder provides a response."




An Infrastructure Design for Certificate Validation in M-Commerce Transactions

- Online certificate-proofs using OCSP consume much processing capacity and bandwidth, both being limited resources in mobile communication scenarios.
- %-OCSP is a modified OCSP protocol concept addressing these issues.
- The idea behind #-OCSP is that validation functions could be delegated to a broker in order to reduce resource utilization in the client.
- Furthermore, mobile clients can benefit from %-OCSP by storing responses of frequently used certificates in their cache.

[Muñoz et al. 2003]



#### System Architecture

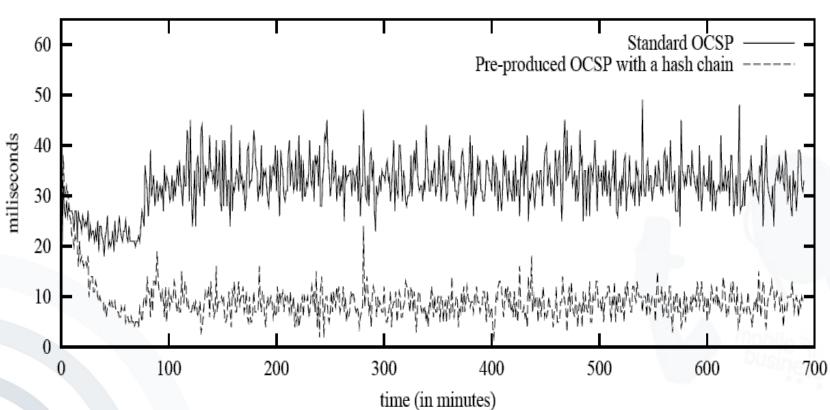




#### Evaluation Approach: Dynamic Analysis

- The developed #-OCSP protocol is evaluated by conducting a dynamic analysis addressing the two identified bottlenecks of the traditional OCSP protocol (processing capacity utilization and bandwidth consumption)

| Analytical | Static analysis       | Examines structure of artifact for static qualities (e.g. complexity)                                   |  |  |  |  |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
|            | Architecture analysis | Studies how artifact fits into technical IS architecture                                                |  |  |  |  |
|            | Optimization          | Demonstrates inherent optimal properties of artifact or provides optimality bounds on artifact behavior |  |  |  |  |
|            | Dynamic analysis      | Studies artifact in use for dynamic properties (e.g. performance)                                       |  |  |  |  |


 By comparing the performance of standard OCSP with %-OCSP in terms of the bottlenecks identified, the newly developed protocol concept can be evaluated.

[Muñoz et al. 2003]

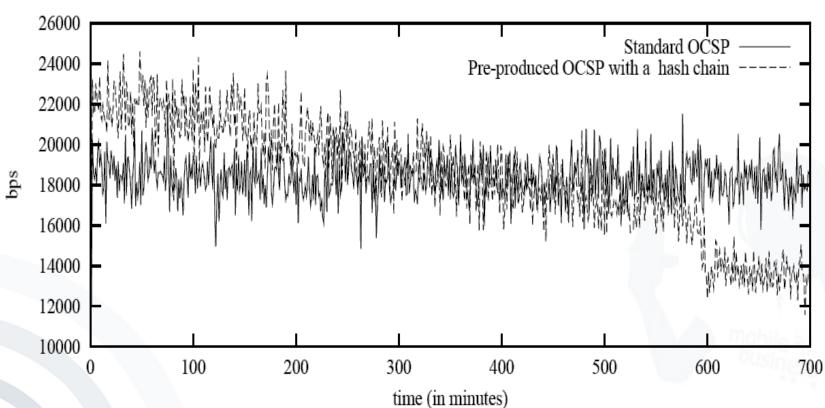


#### Dynamic Analysis: Performance Measurement I

#### Processing capacity consumption



Processing capacity consumption


[Source: Muñoz et al. 2003]

18



#### Dynamic Analysis: Performance Measurement II

#### Down-link bandwidth comparison



Downlink bandwidth





- The Dynamic Analysis provides insights into performance issues by comparing capabilities of existing approaches with new designs.
- After a short period of time (around 70 minutes) the newly designed #-OCSP protocol consumes approx. five times less computational load at the responder compared to the original OCSP protocol.
- The down-link bandwidth utilization is decreasing significantly when the client's cache is fully working and the more frequently asked certificates are requested.



Agenda



- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

# mobile business

#### Example 3: *iTriage* - A Prototypical eHealth Application Design

- *iTriage* is a prototypical eHealth application design that assists nurses to determine the level of urgency of medical attention and decisions (=triage).
- The nurses are guided during their decision-making by *iTrage*.
- They select categories that best classify the patient's need for medical attention.

[Padmanabhan et al. 2006]

| 🎊 Triag  | e e          |          | <b></b>      | 2     |
|----------|--------------|----------|--------------|-------|
|          | ient Nami    | е        | 5/3/2        |       |
| Airway   |              | CF :     |              |       |
|          |              |          |              | •     |
| Breathin | 9            | CF :     | Ţ <u>.</u> . |       |
|          |              | <u> </u> |              | •     |
| abPage1  | TabPage2     | TabPa    | ige3 Tabl    | Page4 |
| Catego   | r <b>y</b> : |          | eset         | Save  |
| CF (%    | 6):          |          |              |       |
|          |              | _        | l.           | ogofi |



Evaluation Approach: Controlled Experiment

 The *iTriage* application design was explored by conducting a laboratory study (experiment within a controlled environment).

| Experimental | Controlled experiment | Studies artifact in controlled environment for qualities (e.g. usability) |
|--------------|-----------------------|---------------------------------------------------------------------------|
|              | Simulation            | Executes artifact with artificial or historical data                      |

- An evaluation framework was developed in order to assess the "decision impact" of the application design.
- The "decision impact" can be evaluated by comparing decision results of two different groups (nurses that were using *iTriage* (PDA Group) and a second group which doesn't (Paper Group)).
- Controlled experiment



## **One** Evaluation Criteria

 The mean accuracy of triage outcomes were then compared for the two user groups (PDA group vs. paper group).

|                                  | PDA Group   | Paper Group |  |
|----------------------------------|-------------|-------------|--|
| Mean accuracy of triage outcomes |             |             |  |
|                                  | <b>67</b> % | 53%         |  |

[Source: Padmanabhan et al. 2006]



## Further Evaluations

Qualitative user feedback can provide further information how to enhance an application design, such as:

- Application features participants liked best
- Application features participants disliked most
- Missing application features participants wanted most





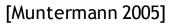
Controlled experiments can provide valuable information and knowledge to the management, users, and system designers, such as:

- Investigation of potential risks involved
- Understanding of the application usage and the range of applicability
- Training of system users
- Evaluation of necessary change requirements



### Agenda

Introduction


mobile business

- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion

# mobile business

#### Example 4: *MoFiNS* - A Prototypical eFinance Application Design

- MoFiNS is a prototypical <u>mobile financial notification</u> system.
- The prototypical system design identifies relevant market events and proactively notifies investors via a mobile push message.
- Investors are enabled to react promptly to critical market events.



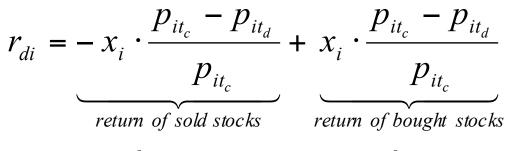




#### Evaluation Approach: Customers' Value Simulation

 The evaluation of *MoFINS* is based on a simulation of the value provided to customers ' using the system.

| Experimental | Controlled experiment | Studies artifact in controlled environment for qualities (e.g. usability) |  |  |  |  |
|--------------|-----------------------|---------------------------------------------------------------------------|--|--|--|--|
|              | Simulation            | Executes artifact with artificial or historical data                      |  |  |  |  |


 This value is measured via defined metrics which define the potential trading profits that can be realized by investors due to a decreased reaction time.

[Muntermann and Janssen 2005]

# mobile business

## **Evaluation Criteria Definition**

 $y_d = \sum_{i=1}^{n} r_{di} - c_i$ 



with 
$$d = \{0, 15, 30, 45, 60, 90, 120\}$$

- $r_{di}$  = realizable return with index *i* and *d*
- $y_d$  = realizable yield with index d
- $x_i$  = trading volume (in  $\in$ ) index *i*
- $p_{it_c}$  = closing price of stock with index *i*
- $p_{it_d}$  = first available price of stock *i*, *d* minutes following the event date
- $c_i$  = costs for trading of stocks with index *i*
- d = reaction delay of the investor
- *i* = index of affected stock

#### [Muntermann and Janssen 2005]



- Using a number of historical events (n=265) and stock price reactions observed, a simulation approach can assess potential trading profits that can be realized due to a decreased reaction time d.
- $y_d$  is calculated for all events, for different trading volumes, and for different reaction delay levels  $d = \{0,15,30,45,60,90,120\}$  minutes.

31

# mobile business

#### Simulation Results

| Simulated Realizable Yields in € for <i>d</i> ={0, 15, 30, 45, 60, 90, 120} and <i>x<sub>i</sub></i> ={50, 100,, 1000} per Year |                  |          |          |          |          |          |          |
|---------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------|----------|----------|----------|
| d [min]                                                                                                                         | <i>d</i> [min] 0 | 15       | 30       | 45       | 60       | 90       | 120      |
| x <sub>i</sub> [€] 50                                                                                                           | -1177.87         | -1297.17 | -1336.25 | -1376.90 | -1425.99 | -1497.46 | -1532.94 |
| 100                                                                                                                             | -606.73          | -845.35  | -923.49  | -1004.79 | -1102.98 | -1245.91 | -1316.88 |
| 150                                                                                                                             | -35.60           | -393.52  | -510.74  | -632.69  | -779.96  | -994.37  | -1100.83 |
| 200                                                                                                                             | 535.53           | 58.30    | -97.98   | -260.59  | -456.95  | -742.83  | -884.77  |
| 250                                                                                                                             | 1106.66          | 510.13   | 314.77   | 111.51   | -133.94  | -491.29  | -668.71  |
| 300                                                                                                                             | 1677.80          | 961.95   | 727.52   | 483.62   | 189.07   | -239.74  | -452.65  |
| 350                                                                                                                             | 2248.93          | 1413.78  | 1140.28  | 855.72   | 512.09   | 11.80    | -236.60  |
| 400                                                                                                                             | 2820.06          | 1865.60  | 1553.03  | 1227.82  | 835.10   | 263.34   | -20.54   |
| 450                                                                                                                             | 3391.19          | 2317.43  | 1965.79  | 1599.92  | 1158.11  | 514.89   | 195.52   |
| 500                                                                                                                             | 3962.33          | 2769.25  | 2378.54  | 1972.03  | 1481.12  | 766.43   | 411.58   |
| 550                                                                                                                             | 4533.46          | 3221.08  | 2791.29  | 2344.13  | 1804.14  | 1017.97  | 627.63   |
| 600                                                                                                                             | 5104.59          | 3672.90  | 3204.05  | 2716.23  | 2127.15  | 1269.51  | 843.69   |
| 650                                                                                                                             | 5675.72          | 4124.73  | 3616.80  | 3088.33  | 2450.16  | 1521.06  | 1059.75  |
| 700                                                                                                                             | 6246.86          | 4576.55  | 4029.56  | 3460.44  | 2773.17  | 1772.60  | 1275.81  |
| 750                                                                                                                             | 6817.99          | 5028.38  | 4442.31  | 3832.54  | 3096.19  | 2024.14  | 1491.86  |
| 800                                                                                                                             | 7389.12          | 5480.20  | 4855.06  | 4204.64  | 3419.20  | 2275.69  | 1707.92  |
| 850                                                                                                                             | 7960.25          | 5932.03  | 5267.82  | 4576.74  | 3742.21  | 2527.23  | 1923.98  |
| 900                                                                                                                             | 8531.39          | 6383.85  | 5680.57  | 4948.85  | 4065.22  | 2778.77  | 2140.04  |
| 950                                                                                                                             | 9102.52          | 6835.68  | 6093.32  | 5320.95  | 4388.24  | 3030.31  | 2356.09  |
| 1000                                                                                                                            | 9673.65          | 7287.50  | 6506.08  | 5693.05  | 4711.25  | 3281.86  | 2572.15  |

[Muntermann and Janssen 2005]

32

# Simulation Results (Graphical Illustration)



Realizable Yields for  $d = \{0, 15, ..., 120\}$  and  $x_i = \{50, 100, ..., 1000\}^*$ 





Conclusion



- Appropriate evaluation metrics need to be defined.
- Historical or artificial data is needed for running a simulation.
- As the evaluation approach addresses services that are not available yet, this ex-ante evaluation addresses the potential value of a corresponding IT investment.





#### Agenda

- Introduction
- Case Studies
- Dynamic Analyses
- Controlled Experiments
- Simulations
- Summary & Conclusion





# Summary & Conclusion

- Different application or service designs demand for a selection of appropriate evaluation methods.
- Appropriate evaluation criteria need to be identified.
- Most evaluations are based on pre-defined evaluation metrics.
- The selection of evaluation criteria and metrics depends on datasets available or observable.



## Literature (1)

- Davern, M. J. and Kauffman, R. J. (2000)
   Discovering Potential and Realizing Value from Information Technology Investments, *Journal of Management Information Systems* (16:4), pp. 121-143
- Hevner, A. R.; March, S. T. and Park, J. (2004)
   Design Science in Information Systems Research, *MIS Quarterly* (28:1), pp. 75-105.
- Muñoz, J. L., Forne, J., Esparza, O. und Soriano, M. (2003) Using OCSP to secure certificate-using transactions in m-commerce, Proceedings of the First International Conference on Applied Cryptography and Network Security, LNCS 2846, Kunming, China.
- Muntermann, J. (2005) Automated Mobile Alerting Services - Towards a Level Playing Field in the Financial Community, *Journal of Electronic Commerce Research* (6:3), pp. 241-250.
- Muntermann, J. and Janssen, L. (2005) Assessing Customers' Value of Mobile Financial Information Services: Empirical-Based Measures, in: D. Avison; D. Galletta and J. I. DeGross (Eds.), *Proceedings of the 26th International Conference*, Las Vegas, NV, USA, pp. 617-628.



### Literature (2)

- Myers, M.; Ankney, R.; Malpani, A.; Galperin, S. and Adams, C. (1999)
   X.509 Internet Public Key Infrastructure Online Certificate Status Protocol OCSP, RFC 2560.
- Ngai, E. W. T.; Cheng, T. C. E.; Au, S. and Lai, K. (2007) Mobile Commerce Integrated with RFID Technology in a Container depot, *Decision Support Systems* (43:1), pp. 62-76.
- Padmanabhan, N.; Burstein, F.; Churilov, L.; Wassertheil, J.; Hornblower, B. and Parker, N. (2006)
   A Mobile Emergency Triage Decision Support System Evaluation, in: R. H. Sprague (Eds.), *Proceedings of the 36th Annual Hawaii International Conference on System Sciences*, Computer Society Press, Los Alamitos, CA, USA.
- Yin, Robert K. (2003) Case Study Research: Design and Methods, 3rd ed., Sage Publications, Thousand Oaks, CA, USA.