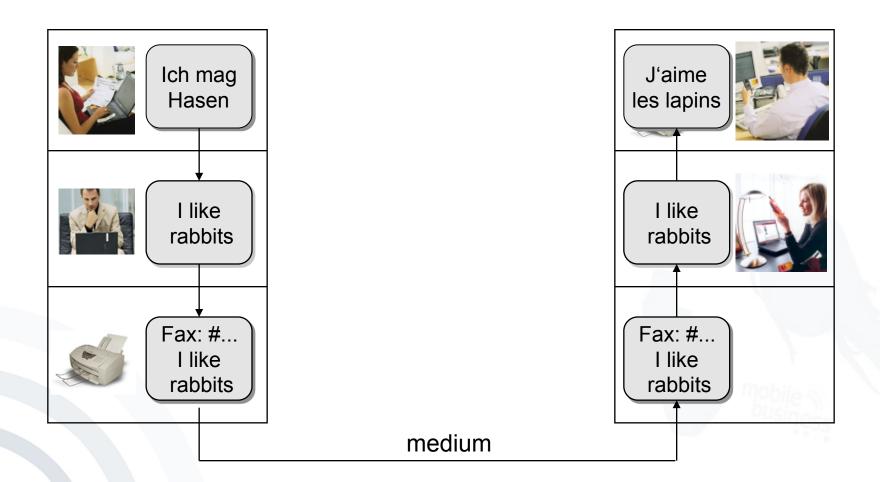

Lecture 10

Network Security I

Information & Communication Security (WS 2014)

Prof. Dr. Kai Rannenberg

T-Mobile Chair of Mobile Business & Multilateral Security Goethe University Frankfurt a. M.


Introduction

- Network Organisation
- Security Protocols
- Wireless / Mobile Security

Layered Communication

Based on [Ta96]

ISO/OSI Reference Model

Application Layer

Presentation Layer

Session Layer

Transportation Layer

Network Layer

Data Link Layer

Physical Layer

- Information technology — Open Systems Interconnection — Basic Reference Model
- "7-Layer-Model"
 - First version
 ISO/IEC 7498-1:1984
 - Current version
 ISO/IEC 7498-1:1994

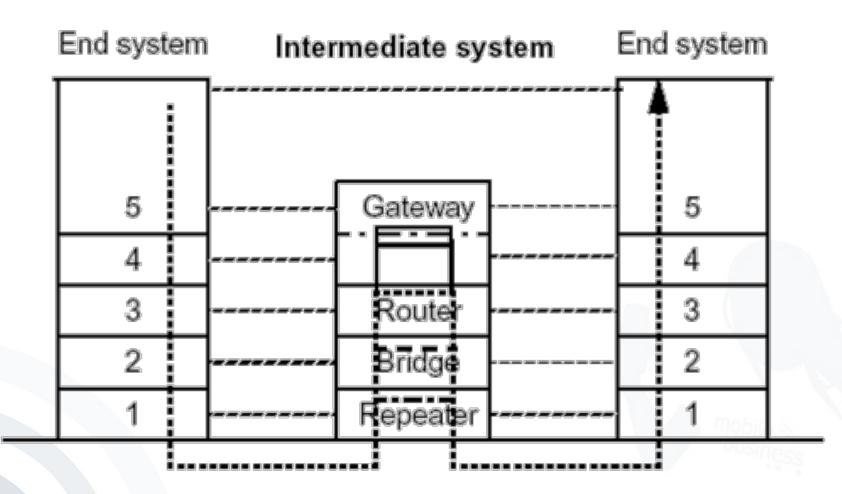
mobile business

Internet Reference Model

Application Layer

Transport Layer

Network Layer


Data Link Layer

Physical Layer

[Ta96]

Communication Example

Physical Layer

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Tasks:

- Bit transfer
- Mechanic
- (connector, medium)
- Electronic
 (signal durability of a bit, voltage)

Data Link Layer

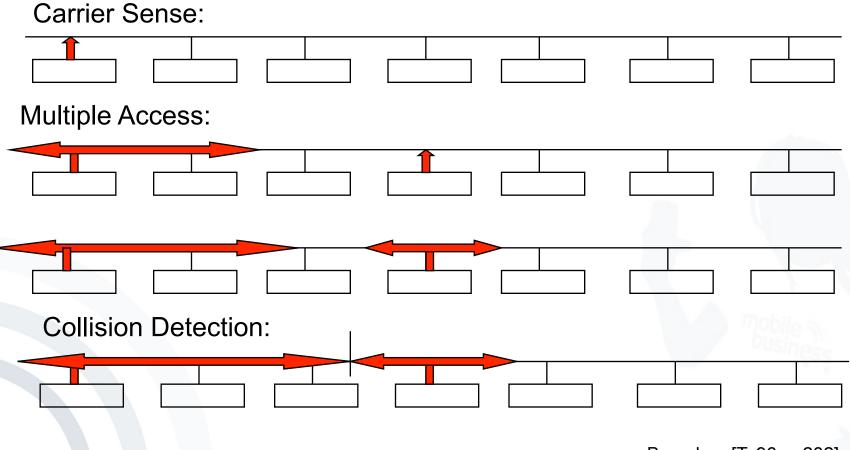
Application Layer Transport Layer Network Layer Data Link Layer Physical Layer

Tasks:

- data transmission between stations in the direct neighbourhood
- error detection and elimination
- flow control
- Medium access control (MAC)

Example: Ethernet

Bus-Network

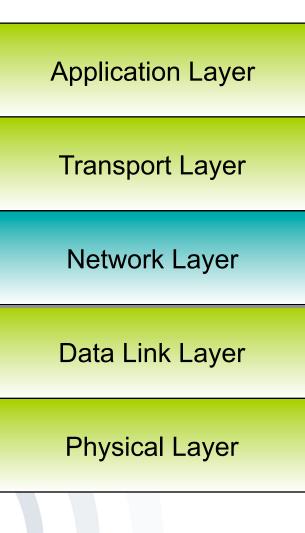


- Additional nodes can easily be added.
- Protocol: Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Example: Ethernet

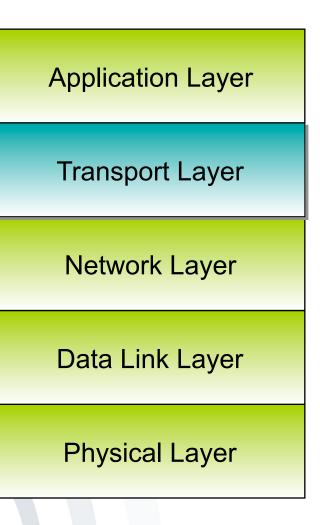
CSMA/CD:

Eavesdropping of all frames i.e. Ethereal:


🍘 <ca< th=""><th>pture> - Ethe</th><th>real</th><th></th><th></th><th></th><th>_ 0 :</th></ca<>	pture> - Ethe	real				_ 0 :
File	<u>E</u> dit <u>C</u> aptu	re <u>D</u> isplay <u>T</u> ools				Help —
No. 🗸	Time	Source	Destination	Protocol	Info	
	0.000000	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[PSH, ACK]
	0.122921	130.83.23.160	62.179.101.66	TCP	1757 > 7128	[ACK] Seq=1
-	0.184619	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[PSH, ACK]
	0.187568	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[ACK] Seq=1
	0.187607	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[ACK] Seq=1
-	0.187706	130.83.23.160	62.179.101.66	TCP	1757 > 7128	[ACK] Seq=1
	0.187718	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[ACK] Seq=1
-	0.188348	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[ACK] Seq=1
	0.188399	130.83.23.160	62.179.101.66	TCP	1757 > 7128	[ACK] Seq=1
	0.189682	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[ACK] Seq=1
	0.232726	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[PSH, ACK]
	0.232854	130.83.23.160	62.179.101.66	TCP	1757 > 7128	[ACK] Seq=1
	0.291815	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[PSH, ACK]
	0.298128	62.179.101.66	130.83.23.160	TCP	7128 > 1757	[ACK] Seq=1
	0.298191 n 708708	62.179.101.66 130 83 73 160	130.83.23.160 62 179 101 66	TCP	7128 > 1757	
	n /ua/ua		n/ 1/4 111 nn		1737 \$ 7174	
E Er a	ama 1 (134)	6 bytes on wire, 13	46 bytes captured)			
			4:00, Dst: 00:06:5b:b9:	15·8a		
			.179.101.66 (62.179.101		Addr: 130.83.	23.160 (130.
			Src Port: 7128 (7128),			
	ta (1292 b [.]		5, 0, 10, 0, 1120 (,1209),		2,51 (2,51),	50q. 1911900
1						
0000	00 06 5b	b9 15 8a 00 07 4f		Г	OUE.	
0010	05 34 OF			.4@.t.		Ê
0020	17 a0 1b	d8 06 dd 73 b8 f0	bc 76 44 b3 4b 50 18	s.		
0030	fa 7a 09		3a da 81 e9 4a e0 64	.z.7	.:J.d	
0040	67 4b 50	31 2c 5c 0b 78 fb	6e 07 a0 cb 81 85 9f	gKP1,∖.×	.n	
Filter:			✓ Reset Apply	File: <capture< td=""><td>e> Drops: 0</td><td></td></capture<>	e> Drops: 0	
	,					

composite packets of higher protocol layers

Network Layer

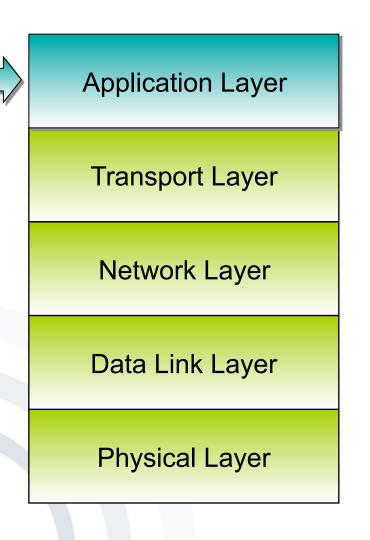

Tasks:

- End-to-end connections
- between systems
- Routing
- Addressing
- Typically connectionless

For example: IP

Transport Layer

Tasks:


- Connection between source and target
- Optimisation of quality of service and service costs
- Flow control
- Connection management

For example: TCP, UDP

Application Layer

Tasks:

- provides services to the user/applications
- Examples (service/protocol): E-Mail / SMTP, WWW / HTTP, file transfer / FTP

SMTP: Simple Mail Transfer Protocol

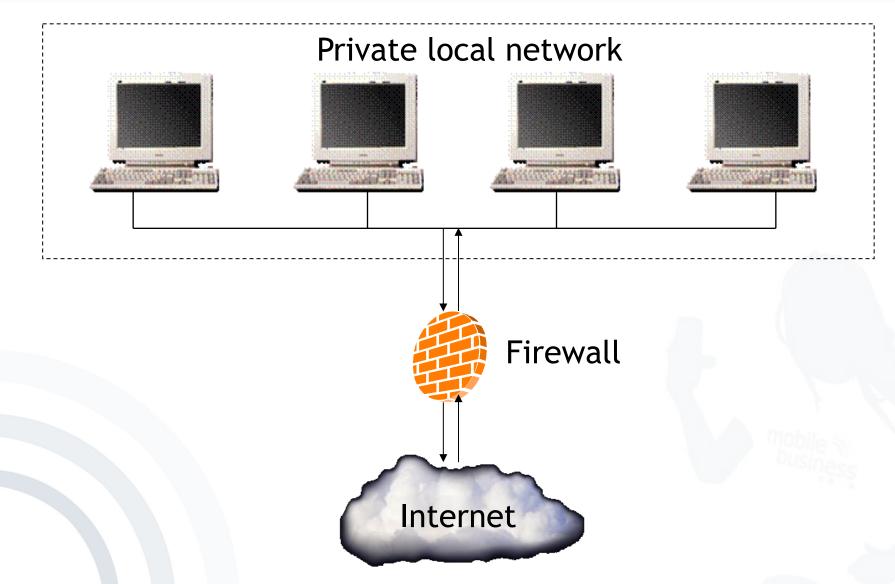
HTTP: Hyper Text Transfer Protocol

FTP: File Transfer Protocol

Agenda

- Network Organisation
 - Firewalls
 - Demilitarized Zone
 - Intrusion Detection
- Security Protocols
- Wireless / Mobile Security

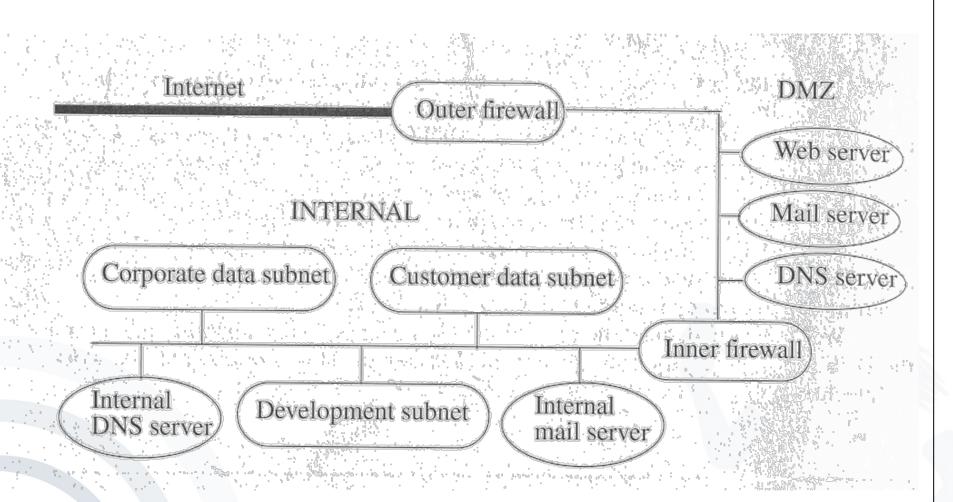
Agenda


- Introduction
- Network Organisation
 - Firewalls
 - Demilitarized Zone
 - Intrusion Detection
- Security Protocols
- Wireless / Mobile Security

"A firewall is an internetwork gateway that restricts data communication traffic to and from one of the connected networks (the one said to be *inside* the firewall) and thus protects that network's system resources against threats from the other network (the one that is said to be outside the firewall)." [RFC 2828]

Firewall

Agenda

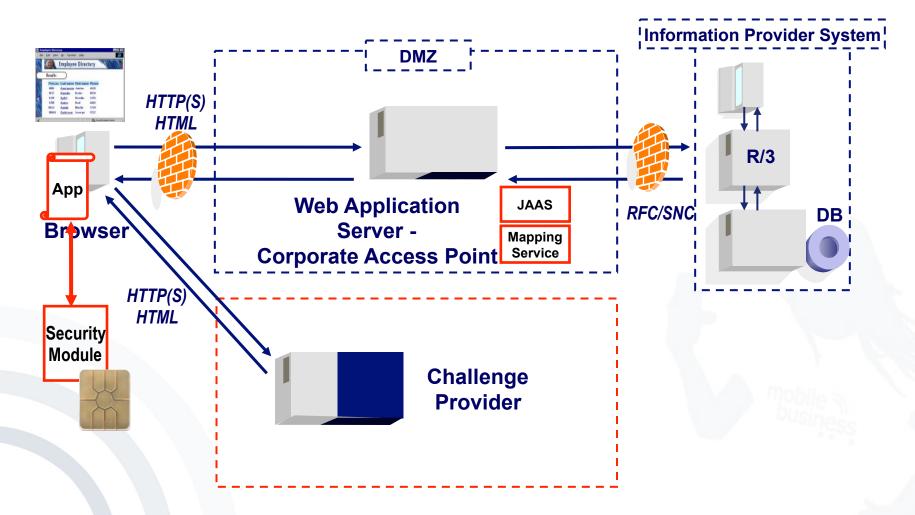

- Introduction
- Network Organisation
 - Firewalls
 - Demilitarized Zone
 - Intrusion Detection
- Security Protocols
- Wireless / Mobile Security

- The DMZ is a portion of a network, that separates a purely internal network from an external network. [Bi05]
- The "outer firewall" sits between the Internet and the internal network.
- The DMZ provides limited public access to various servers.
- The "inner firewall" sits between the DMZ and the subnets not to be accessed by the public.

Network using a DMZ

Example: CamWebSIM Additional Channel for Login Authorisation - User view

mobile business

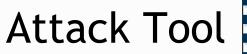

NOR A

?????

Login MyBank Confirm Cancel Alarm

Example: WiTness Security Module for Login Authorisation - System view

- Introduction
- Network Organisation
 - Firewalls
 - Demilitarized Zone
 - Intrusion Detection
- Security Protocols
- Wireless / Mobile Security


mobile business

Computer systems that are not under attack exhibit several characteristics [Bi05]:

- 1. The actions of users and processes generally conform to a statistically predictable pattern. A user who does only word processing when using the computer is unlikely to perform a system maintenance function.
- 2. The actions of users and processes do not include sequences of commands to subvert the security policy of the system. In theory, any such sequence is excluded; in practice, only sequences known to subvert the system can be detected.
- 3. The actions of processes conform to a set of specifications describing actions that the processes are allowed to do (or not allowed to do).

Denning [De87] hypothesized that systems under attack fail to meet at least one of these characteristics.

- An attack tool is an automated script designed to violate a security policy.
- Example: Rootkits
 - Exist for many versions of operating systems, i.e. Unix (but not only).
 - Can be designed to sniff passwords from the network and to conceal their presence.
 - Include tools to automate the installation procedure and has modified versions of system utilities.
 - Installer is assumed to have root privileges (hence the name rootkit).
 - Can eliminate many errors arising from incorrect installation and perform routine steps to clean up detritus of the attack.

Goals of Intrusion Detection Systems

- Detect a wide variety of intrusions:
 - Inside and outside attacks
 - Known and previously unknown attacks should be detected.
 - Adapt to new kinds of attacks
- Detect intrusions in a timely fashion
- Present the analysis in a simple, easy to understand format
- Be accurate:
 - False positives reduce confidence in the correctness of the results.
 - False negatives are even worse, since the purpose of an IDS is to report attacks.

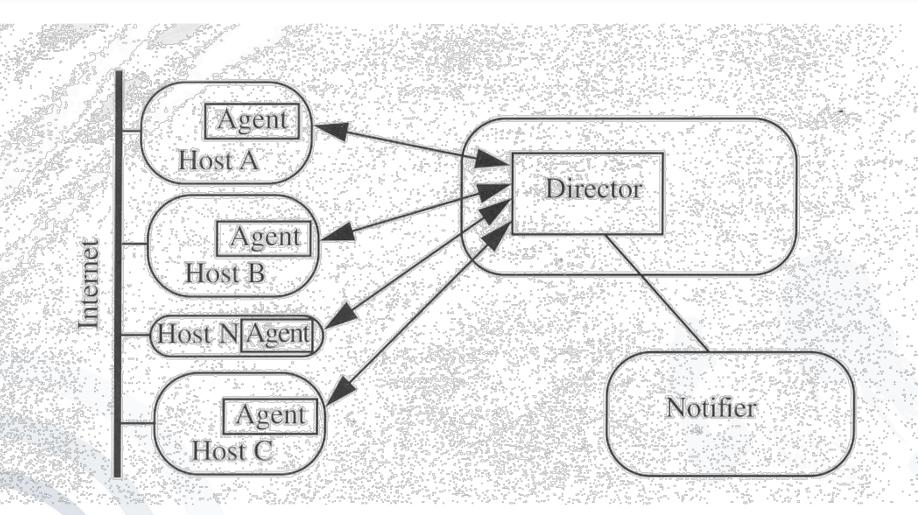
Anomaly Detection

- Anomaly detection analyzes a set of characteristics of the system and compares their behavior with a set of expected values.
- It reports when the computed statistics do not match the expected measurements.

- Misuse detection determines whether a sequence of instructions being executed is known to violate the site security policy being executed. If so, it reports a potential intrusion.
- Example: Network Flight Recorder (NFR)

- NFR has three components:
 - The packet sucker reads packets off the network.
 - The decision engine uses filters written in a language called N-code to extract information.
 - The backend writes the data generated by the filters to disk.

- Specification-based detection determines whether or not a sequence of instructions violates a specification of how a program, or system, should execute. If so, it reports a potential intrusion.
- Example threat source to be controlled: The Unix program rdist



Autonomous Agents

An autonomous agent is a process that can act independently of the system of which it is a part.

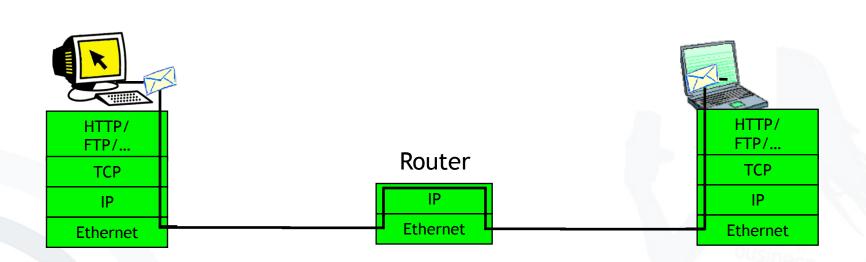
 Example: The Autonomous Agents for Intrusion Detection (AAFID)

Intrusion Detection System

Agenda

Introduction

- Network Organisation
- Security Protocols
 - Virtual Private Networks
 - Secure Socket Layer
 - IPsec
- Wireless / Mobile Security


Agenda

Introduction

- Network Organisation
- Security Protocols
 - Virtual Private Networks
 - Secure Socket Layer
 - IPsec
- Wireless / Mobile Security

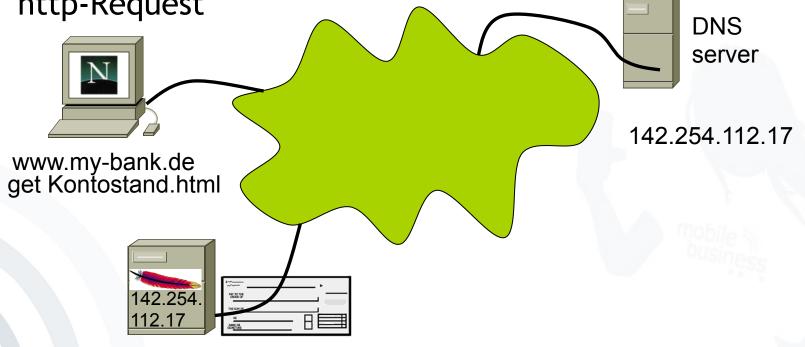
mobile business

Communication without a VPN

mobile business

37

- Introduction
- Network Organisation
- Security Protocols
 - Virtual Private Networks
 - Secure Socket Layer
 - IPsec
- Wireless / Mobile Security



Example: Online-Banking

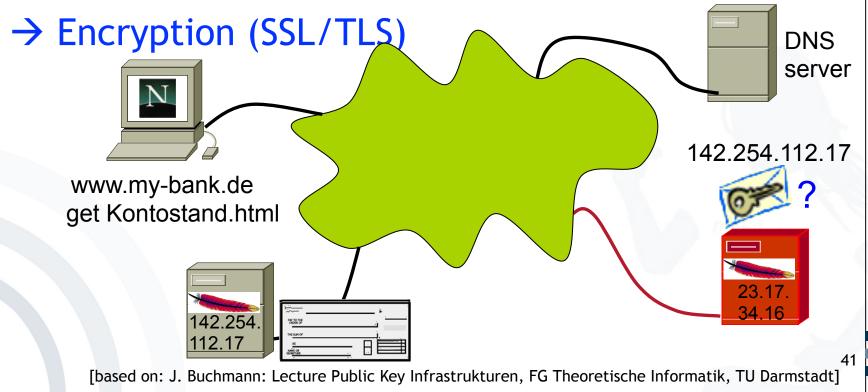
www.my-bank.de/Kontostand.html

Actions of the browser:

- 1. DNS-Request
- 2. http-Request

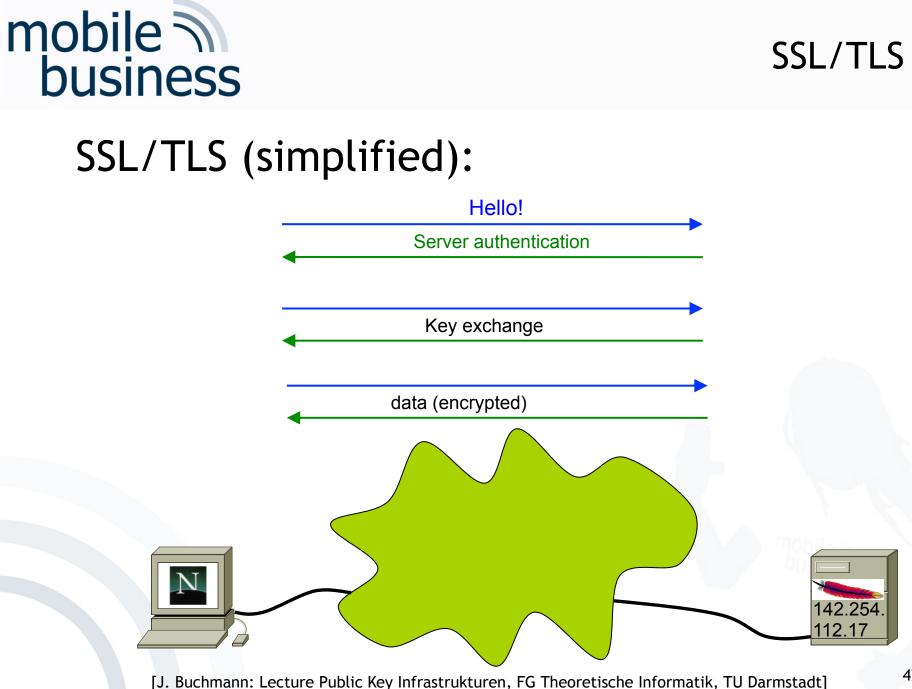






Possible attacks: 1. Compromise of DNS (DNS spoofing) \rightarrow Server authentication DNS server 19 www.my-bank.de get Kontostand.html 142 254

[based on: J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU Darmstadt] 40



mobile business

Possible attacks:

SSL/TLS:

- Server- and client-authentication
- Key exchange for symmetric encryption
- MACs to secure integrity

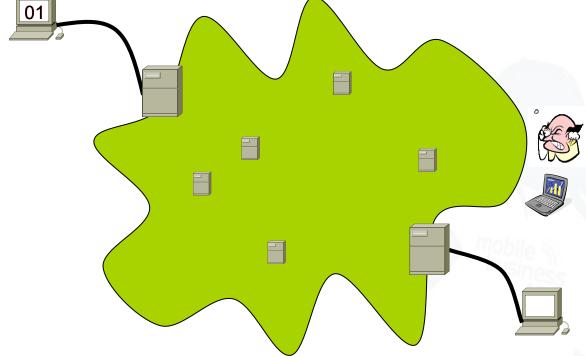
Security Goal	http	https (SSL/TLS)
Authenticity	×	✓ (mostly server only)
Non-Repudiation	×	×
Confidentiality	×	\checkmark
Integrity	×	✓ Dusiness
Date documentation	×	×

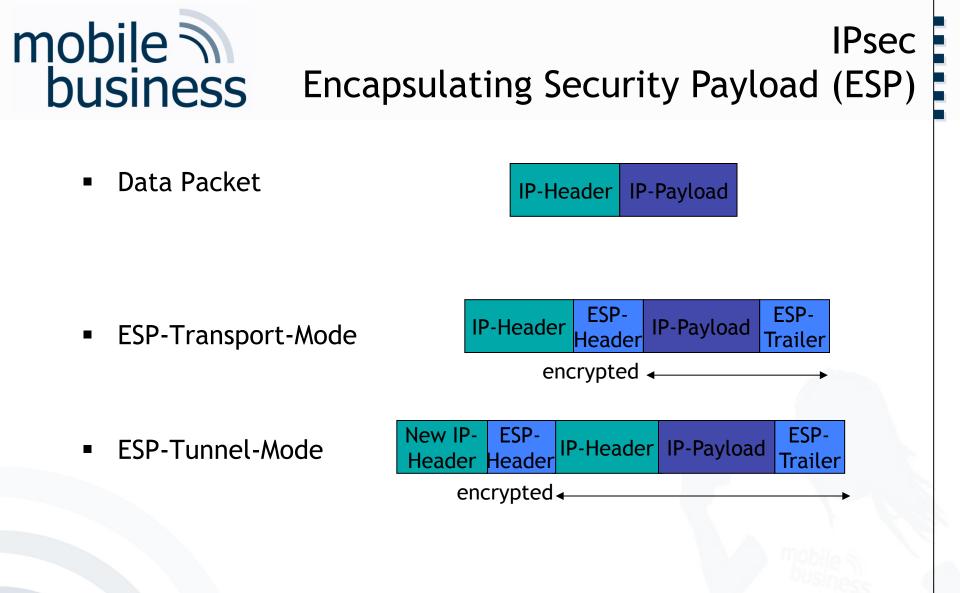
Heartbleed

 Serious vulnerability in the popular OpenSSL cryptographic software library

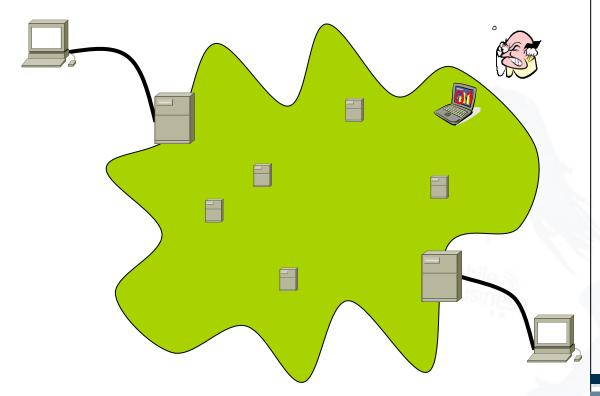
mobile business

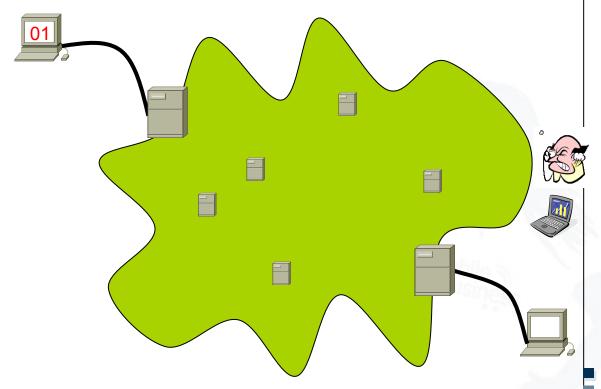
- OpenSSL is an open-source implementation of the SSL/ TLS protocol.
- Heartbleed is not a design flaw in SSL/TLS protocol, but it is an implementation problem in the OpenSSL library.
- When the vulnerability is exploited, it leads to the leak of memory contents from the server to the client and from the client to the server.
- CVE-2014-0160 is the official reference to this bug (www.cve.mitre.org).

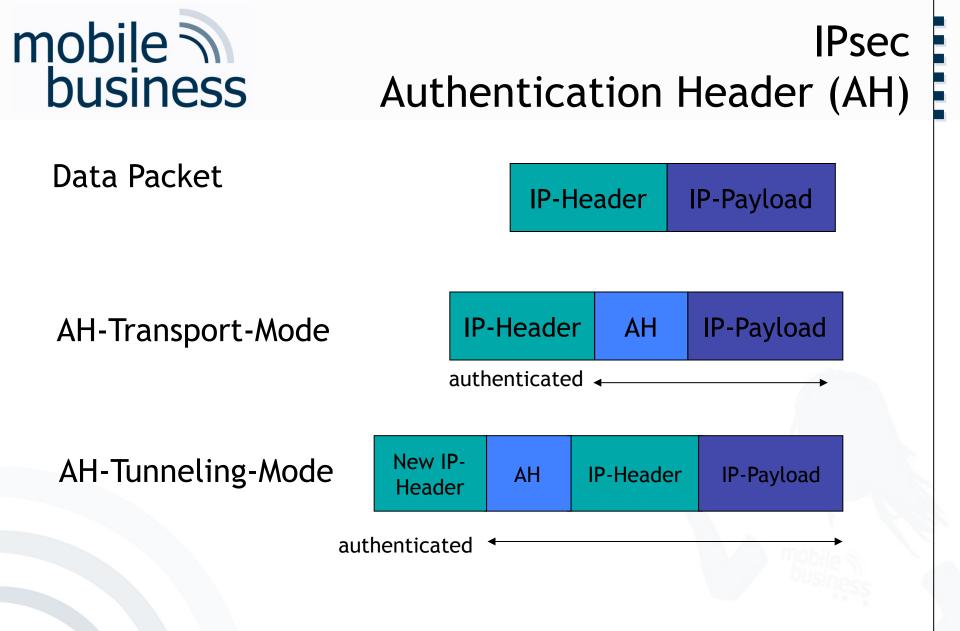

- Introduction
- Network Organisation
- Security Protocols
 - Virtual Private Networks
 - Secure Socket Layer
 - IPsec
- Wireless / Mobile Security



- Attacker is able to eavesdrop IP packets.
- Ideally: at the gateway of sender or recipient


Based on: [J. Buchmann: Lecture Public Key Infrastrukturen, FG Theoretische Informatik, TU Darmstadt]⁴⁶


 Attacker sends IP-packets with a faked sender address.



Attacker impersonates the recipient.

References

- [Bi05] Matt Bishop: Introduction to Computer Security. Boston: Addison Wesley, 2005, pp. 455-516
- [De87] Dorothy Denning: "An Intrusion- Detection Model", IEEE Transactions on Software Engineering, 13 (2), pp. 222-232
- [He14] Heartbleed: "The Heartbleed Bug", www.heartbleed.com
- [RFC 2828] Network Working Group: "Request for Comments 2828 - Internet Security Glossary", 2000, www.faqs.org/ftp/rfc/pdf/rfc2828.txt.pdf
- [Ta96] A.S. Tanenbaum: Computer Networks, 3rd Edition, 1996 [4th edition available]