
R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Chair of Mobile Business &

Multilateral Security

Business Informatics 2 (PWIN)

WS 2019/20

ICS Development I

Software Engineering

Prof. Dr. Kai Rannenberg

Chair of Mobile Business & Multilateral Security

Johann Wolfgang Goethe University Frankfurt a. M.

Lecture 08

1

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agenda

 Introduction to Software Engineering

 Software Engineering Process Overview

 Software Development Process Models

2

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

What is Software?

 What is software?

 Computer programs and associated documentation.

 Software is developed for a particular customer (individual

software) or for a general market (standard software).

 What are the attributes of good software?

 Good software is supposed to deliver the required

functionality and performance to the user and has to be

maintainable, reliable and usable.

3

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Who Needs Software?

 Most software used in organisations is built for people
with specific needs.

 A stakeholder is anyone who has an interest (or a stake) in the
software.

 A user is someone who uses the software in order to perform
tasks.

 Sometimes stakeholders are users; but most of the time
stakeholders do not use software.

 For example, a senior manager (e.g. CEO or CTO in a company)
usually has a stake in the software to be built, even if they are
never going to use it.

Source: Stellmann, Greene (2006)

4

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Who Builds Software?

 Software is typically built by a team of software
engineers, which include:

 Business analysts or requirements analysts, who gather
requirements for a software by interviewing users and
stakeholders

 Designers and architects, who plan, design, and model the
technical architecture and system of the software

 Programmers, who write the code for the software

 Testers, who verify that the software meets its requirements
and behaves as expected

Source: Stellmann, Greene (2006)

5

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Why Do Software

Development Projects Fail?

 People begin programming
before they understand the
problem.

 The team has an unrealistic
idea about how much work is
involved.

 Mistakes are injected early
but discovered late.

 Managers try to “test” quality
into software.

Source: Stellmann, Greene (2006)

6

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

7

Why Do Software

Development Projects Fail?

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

How to Ensure That Software

Projects Succeed?

 Application of “Good Engineering Practices”

 Managers and teams often want to skip important engineering
practices – especially effort estimation, continuous reviews,
requirement acquisition and testing.

 If it would be faster to build the software without these practices,
they would never be used.

 The reason for applying these practices is to save time and increase
software quality by accurate planning and revealing mistakes early.

 Not applying theses practices increasing development time while
reducing the software quality.

Source: Stellmann, Greene (2006)

8

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Software Engineering (SE)

 Software Engineering (SE) is a discipline that is concerned with all

aspects of software production from the early stages of system

specification and system design down to rollout and system

maintenance.

 Engineering as discipline means applying appropriate theories and

methods to solve problems while considering organisational and

financial constraints.

 Software Engineering covers all aspects of software production

 Technical development process (main task)

 Project management, development of tools, methods etc. in

order to support software production (supporting tasks)

Source: Sommerville (2007)

9

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Important

Software Engineering Objectives

 Development of software according to

specified quality standards

 Avoidance of disastrous time delays and

exceed of budget

 Addressing of changing requirements while

staying on budget and deadlines

10

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

ICT-Project Management vs.

Software Engineering

ICT-Project Management

Software Engineering

11

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Software Project Planning

Vision and Scope Document

Software Project Plan

Project Schedule

Risk Plan

P
ro

je
c
t M

a
n
a
g
e
m

e
n
t

12

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Vision and Scope Document

 One of the most important tools of a project manager
 Enables that stakeholders and developers share a common

understanding of the needs – and the needs addressed by the
software

 Typical document outline

1. Problem Statement
a) Project background
b) Stakeholders
c) Users
d) Risks
e) Assumptions

2. Vision of the Solution
a) Vision statement
b) List of features
c) Scope of phased release (optional)
d) Features that will not be developed

Source: Stellmann, Greene (2006)

13

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

 Used by many people in an organisation

 Project manager: Communication of project status to stakeholders,
planning of team activities

 Team members: Understanding the context of their work

 Senior manager: Verifying that costs and schedule are under control

 Stakeholders: Ensuring the project is on track

 Project plan consists of:

 Statement of work (SOW): Describes list of features to be developed
and their required estimated effort

 Resource list: List of all resources required for the project

 Work breakdown structure: List of required tasks to develop the
software

 Project schedule: Assignment of resources and calendar time to a
required task

 Risk plan: Risks that could threaten the project and potential
means to mitigate these risks

Project Plan

Source: Stellmann, Greene (2006)

14

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Developing a

Project Schedule (1)

1. Allocate resources to the task

2. Identify dependencies between tasks

Source: Stellmann, Greene (2006)

15

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Developing a

Project Schedule (2)

3. Create a schedule

Source: Stellmann, Greene (2006)

16

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Developing a

Project Schedule (3)

Project Schedule

S
o
u
rc

e
: S

te
llm

a
n
n
, G

re
e
n
e
 (2

0
0
6
)

17

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Risk Plan

 A risk plan is a list of all risks that threaten the

project, along with a plan to mitigate some or

all of those risks.

 Building a risk plan

1. Brainstorming of potential risks

2. Estimate the impact of each risk

3. Make a mitigation plan

Source: Stellmann, Greene (2006)

18

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Example of a Risk Plan

Source: Stellmann, Greene (2006)

19

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agenda

 Introduction to Software Engineering

 Software Engineering Process Overview

 Software Development Process Models

20

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Diversity of Software

Engineering Approaches

 There are many different types of software and there is no

universal set of SE methods which is applicable to all of these.

 The types of Software Engineering methods and tools to be

applied depend on

 the type of application to be developed,

 the requirements of the customer and

 the background of the development team.

 Examples for different software projects:

 Adding new functions to ERP production system

 Development of a proprietary standard software (e.g. Office suite)

 Building of a website

21

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Software Engineering Process

 The Software Engineering Process is a structured set of activities

to develop a software.

 Many different Software Engineering processes exist, but all of

them share the following aspects

 Requirements Specification: Definition of the behaviour of a

software

 Design and Implementation: Designing (e.g. modelling) and

implementing (e.g. programming/coding) the software

 Validation: Evaluating the features of the software against the

specified requirements

 Evolution: Modifying the software in response to changed

customer needs.

22

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Requirements Specification (1):
Software Requirements

 Software requirements specify the desired behaviour of a
software.

 Requirements analysts (or business analysts) generate software
requirements specifications through requirements elicitation.
 Interviews with the users, stakeholders and anyone else whose perspective

needs to be taken into account

 Observation of the users at work

 Prototyping of software

 ...

The gathered insights are summarised and send back to the users / stakeholders in
order to make sure everybody shares a common understanding about them.

 Software requirements should be documented in a Software
Requirements Specification, which complies with the
corresponding IEEE Standard.

23

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Requirements Specification (2):
Use Cases

 A use case is a description of a specific interaction that a user may have
with a software.

 Use cases are simple means for describing the functionality of a software.

 Use cases do not describe any internal workings of the software, nor do
they explain how the software is going to be implemented.

Source: WikiCommons (2011)

24

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Requirements Specification (3):
Functional vs. Non-Functional Requirements

 Functional requirements define the explicitly perceptible
behaviour of a software.

 Login,

 Calculations,

 Configuration Options,

 Features (e.g. display of customer information)

 ...

 Non-functional requirements define characteristics of a software,
which do not affect its behaviour (software quality attributes).

 Usability

 Performance

 Error handling

 ...

25

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Design & Implementation

 Vision and Scope documents the needs of an
organisation

 Requirements specify the required behaviour
of software in order to satisfy those needs

 Design specifies how software requirements are
to be technically implemented

26

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Validation (1)

 A test case specifies a user test in order to evaluate a
specific software behaviour.

 Test cases are very similar to use cases as they provide
step-by-step instructions for the interaction between
the user and the software.

 A test plan is an organised list of all required test
cases to run through in order to evaluation the
functionality of a software against its specified
requirements.

27

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Validation (2)

 A typical test case is outlined in a
table, and includes:

 A unique name and number

 A short description of the test
case

 Preconditions which describe
the state of the software
before the test case

 Steps that which make up the
interaction during the test

 Expected Results, which
describe the expected state
of the software after the test
case was run through

28

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Evolution

 Change control is a method for implementing only those
changes that are worth pursuing while preventing
unnecessary or overly costly changes from derailing the
project.

 Establishing a Change Control Board

 Project manager

 Important stakeholders

 Designers, programmers, testers

 …

 Change Control Board decides which of the requested
changes are actually going to be implemented.

29

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Example: Software Development Process for the

NATO Interoperable Submarine Broadcast

System (NISBS)

 Requirements Specification:
“The primary mission of the NISBS is to provide the U.S. with a NATO-interoperable

message preparation, management, format and transmit capability. The NISBS
shall be capable of […]”

 Design and Implementation:
„Prepare Source Code Record (SCR) and Executable Object Code Record (EOCR) in

accordance with 4.2 […]“

 Validation:
“Evaluate test plans and tests against criteria: traceability to requirements, […]

appropriateness of test standards and methods used […]“

 Evolution:
“[…] Assist with retirement or replacement of the system as needed.”

NOTE: In a software development plan each step is
described in extensive detail!

Source: Space and Naval Warfare Systems Center (ed.) (1999)

30

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agenda

 Introduction to Software Engineering

 Software Engineering Process Overview

 Software Development Process Models

31

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Plan-driven vs. Agile Software

Development

 Plan-driven SD consists of processes in which all activities have

been planned in advance and progress is measured against this

plan.

 In agile processes, planning is incremental and it is easier to

change the process to reflect changing customer requirements.

 In practice, most practical processes include elements of both

plan-driven and agile approaches.

32

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Software Development

 Process Models

 Describe the development process by defining the process steps

and results

 Define principles, methods and tools for the development process

 Determine chronological sequence for planning, development and

implementation of projects

 Are available in a wide variety of approaches

33

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Classification of Process Models

 Sequential model

 Consecutive phases with an increasing granularity and

milestones as results of phases

 Modified sequential models

 Phases are interleaved with an increasing granularity

and milestones as results of phases

 Evolutionary models

 No phases with defined results. Instead iterative cycles

of “design, implementation and validation”

 Agile models

 Only a general framework for an approach, few rules,

very flexible, dynamic phases

fle
x
ib

le
 p

la
n
n
e
d

34

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Sequential Models

 The waterfall model (first described by Royce in 1970)

 There seem to be at least as many versions as there are authors -

perhaps more

35

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Example of a Sequential Model:

NATO Interoperable Submarine

Broadcast System (NISBS)
OCD: Operational Concept

Document

SRS: System Requirements

Specification

SRD: Software Requirements

Description

UDD: User Documentation

Description

SRR: System Requirements

Review

SDD: Software Design

Description

SIDD: Software Interface

Design Description

SDR: Software Design Review

ITP/P: Integration Test

Plan/Procedures

ITR: Integration Test Report

TRR: Test Readiness Review

QTP/P: Qualification Test

Plan/Procedures

QTR: Qualification Test

Report

SUR: Software Usability

Review

SDP: Software Development

Plan

SCMP: Software

Configuration Management

Plan

SQAP: Software Quality

Assurance Plan Source: Space and Naval Warfare Systems Center (ed.) (1999)

1.Software
Requirements

SRR SDR TRR SUR

Code

OCD

SRS

SRD

UDD
SDD

SIDD

ITP/P ITR QTP/P QTR

Project Planning and Oversight

Software Configuration Problem

Software Quality Assurance

SDP

SCMP

SQAP

2.Software
Design

3.Software Unit
Development, Test,
Integration

4.System
Qualification Test
and Delivery

5.Support of
Installation and
Use

36

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Sequential Models

 One or more documents are produced after each phase

and on which one has to “sign off”.

 Aspects worth mentioning:

 “Water does not flow up” It is difficult to change

an artifact produced in the previous phase.

 Approach should only be used if requirements are

clear and well understood.

 Reflects traditional engineering practice

 Simple management approach

37

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

V-Model

 Horizontal lines denote the information flow between

activities at the same abstraction level.

 First proposal in 1979
Source: Clarus (2005)

38

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

V-Model

 Similar to pure waterfall model, but makes the dependencies

between development and verification activities explicit.

 The left half of the “V” represents development and the right half

system validation.

 Note the requirements specification includes requirements

elicitation and analysis.

39

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Evolutionary Models Example:

Spiral Model

Source: Marciniak (2002)

40

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Evolutionary Model Example:

Spiral Model

 Basic Concept

 Develop an initial implementation, demonstrate it to user, get
feedback and refine it until an adequate system has been produced.

 Two types of evolution models:

 Exploratory

 Throw-away prototyping

 Advantages

 Estimates for budget, schedule, etc. become more realistic as work
progresses

 Disadvantages

 Requires expertise in risk evaluation and mitigation

 Appropriate only for large systems

41

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agile Models

 Characteristics

 Only a general development framework

 Strong integration and interaction with the customer during the
development process

 Short development cycles (e.g. 6-8 weeks)

 Continuous change of project specifications / requirements

 Direct and informal communication between the project participants

 Little documentation

 Requires a lot of discipline of all participants

 Examples: eXtreme Programming, SCRUM, Feature-Driven
Development

 To be applied under the following circumstances:

 Specifications are uncertain and subject to continuous change

 Innovative projects

42

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agile Models Example:

 Scrum

Source: Pressman (2005)

43

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Agile Models Example:

 Extreme Programming

Source: www.extremeprogramming.org, 2011

44

R0 G49 B82

R105 G133 B153

R111 G118 B127

R226 G0 B116

R255 G71 B167

R255 G185 B222

R0 G0 B00

Literature

 Clarus (2005) “Concept of Operations”, Federal Highway
Administration (FHWA), Publication No. FHWA-JPO-05-072, 2005.

 Extremprogramming (2011) http://www.extremeprogramming.org

 Marciniak J. (ed.) (2002) ”Encyclopedia of Software Engineering”,
2nd. Edition, 993-1005, Wiley, 2002.

 Pressman R, (2005) “Software Engineering: A Practitioner's
Approach”, Mcgraw Hill Book, 6th edition, 2005

 Project Cartoon (2011) http://www.projectcartoon.com

 Royce, W. (1970) "Managing the Development of Large Software
Systems", Proceedings of IEEE WESCON 26 (August): 1–9.

 Sommerville I. (2007) „Software Engineering“, Pearson Studium, 8th
edition, 2007.

 Stellmann, A.; Greene, J. (2011) “Applied Software Project
Management“, O‘Reilly Media Inc 2006.

 Space and Naval Warfare Systems Center (ed.) (1999) „Software

Development Plan (SDP) for the NATO Interoperable Submarine

Broadcast System (NISBS)“, San Diego, 1999.

45

http://www.projectcartoon.com/

