

#### Lecture 9

Mobile Devices

Mobile Business I (WS 2015/16)

Prof. Dr. Kai Rannenberg

Deutsche Telekom Chair of Mobile Business & Multilateral Security Johann Wolfgang Goethe University Frankfurt a. M.



[Source: Nokia]





### Introduction

- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
  - Means for I/O



# Mobile Terminal vs. Mobile Device

 A Mobile Device is a small, handheld computing device.

 Mobile Terminal emphasises the fact that the mobile device represents the end of a communications link or the edge node of a communications network.

# mobile no business

Device Manufacturers and Brands

(including some historic ones)

- Alcatel
- Apple
- Audiovox
- Benefon
- BenQ Mobile
- Blackberry
- Bosch
- Ericsson
- Google
- HTC
- Huawei
- LG Electronics
- Microsoft
- Motorola
- NEC
- Nokia
- Panasonic





- Philips
- Sagem
- Samsung
- Sendo
- Siemens
- Sony
- TCL Communication
- Telepong
- Telit
- Telme
- Toshiba
- Trium
- Windhorst
- Xelibri
- Yulong
- ZTE



Worldwide Mobile Phone Sales to End Users by Vendor Q1-2015 vs. Q1-2005

| Company                    | 1Q15 units   | 1Q15 Market<br>Share (%) | 1Q05 units   | 1Q05 Market |
|----------------------------|--------------|--------------------------|--------------|-------------|
| Samsung                    | 97,986       | 21.3                     | 24,479.8     | 13.5        |
| Apple                      | 60,177       | 13.1                     | -            |             |
| Microsoft (former Nokia)   | 33,002       | 7.2                      | 54,960.1     | 30.4        |
| LG Electronics (former LG) | 19,637       | 4.3                      | 11,464.2     | 6.3         |
| Lenovo*/Motorola           | 19,280       | 4.2                      | 30,143.3     | 16.7        |
| Huawei                     | 18,590       | 4.0                      |              |             |
| TCL Communication          | 14,189       | 3.1                      | <b>⊃</b> otl | hers        |
| ZTE                        | 12,600       | 2.7                      |              |             |
| BenQ Mobile                | 0 0 1 1      |                          | 10,209.5     | 5. <i>7</i> |
| Sony Mobile Com.           | <b>⇒</b> oth | ers                      | 9,905.8      |             |
| Others                     | 184,799.9    | 40.1                     | 39,829.5     | 21.9        |
| TOTAL                      | 460,261.7    | 100.0                    | 180,992.2    | 100.0       |

<sup>\* \*</sup>The results for Lenovo include sales of mobile phones by Lenovo and Motorola both in 1Q15



#### Worldwide Mobile Phone Sales to End Users by Vendor Q1-2015 vs. Q1-2014

In 1.000 Units

| Company                     | 1Q15<br>Units | 1Q15<br>Market<br>Share (%) | 1Q14<br>Units | 1Q14 Market<br>Share (%) |
|-----------------------------|---------------|-----------------------------|---------------|--------------------------|
| Samsung                     | 97,986        | 21.3                        | 110,046       | 24.5                     |
| Apple                       | 60,177        | 13.1                        | 43,062        | 9.6                      |
| Microsoft (former<br>Nokia) | 33,002        | 7.2                         | 49,689        | 11.1                     |
| LG Electronics              | 19,637        | 4.3                         | 14,882        | 3.3                      |
| Lenovo*                     | 19,280        | 4.2                         | 17,292        | 3.9                      |
| Huawei                      | 18,590        | 4.0                         | 14,574        | 3.2                      |
| Xiaomi                      | 14,740        | 3.2                         | 9,634         | 2.1                      |
| TCL Communication           | 14,189        | 3.1                         | 11,956        | 2.7                      |
| ZTE                         | 12,600        | 2.7                         | 13,845        | 3.1                      |
| Micromax                    | 8,158         | 1.8                         | 7,791         | 1.7                      |
| Others                      | 161,901.9     | 35.2                        | 156,195.0     | 34.8                     |
| Total                       | 460,261.7     | 100.0                       | 448,966.1     | 100.0                    |



#### Worldwide Mobile Phone Sales to End Users by Vendor 2012 vs. 2011 - A Decline?

In 1.000 Units

| Company             | 2012<br>Units | 2012 Market<br>Share (%) | 2011<br>Units | 2011 Market<br>Share (%) |
|---------------------|---------------|--------------------------|---------------|--------------------------|
| Samsung             | 384,631.2     | 22.0                     | 315,052.2     | 17.7                     |
| Nokia               | 333,938.0     | 19.1                     | 422,478.3     | 23.8                     |
| Apple               | 130,133.2     | <i>7</i> .5              | 89,263.2      | 5.0                      |
| ZTE                 | 67,344.4      | 3.9                      | 56,881.8      | 3.2                      |
| LG Electronics      | 58,015.9      | 3.3                      | 86,370.9      | 4.9                      |
| Huawei Technologies | 47,288.3      | 2.7                      | 40,663.4      | 2.3                      |
| TCL Communication   | 37,176.6      | 2.1                      | 34,037.5      | 1.9                      |
| Research In Motion  | 34,210.3      | 2.0                      | 51,541.9      | 2.9                      |
| Motorola            | 33,916.3      | 1.9                      | 40,269.1      | 2.3                      |
| HTC                 | 32,121.8      | 1.8                      | 43,266.9      | 2.4                      |
|                     |               |                          |               |                          |
| Others              | 587399.6      | 33.6                     | 595886.9      | 33.6                     |
| TOTAL               | 1,746,175.6   | 100.0                    | 1,775,712.0   | 100.0                    |

Cf. TOTAL Units sold in 2013: 1,820,200.0



Worldwide Smartphone Sales to End Users by Vendor Q3-2015 vs. Q2-2015

In 1.000 Units

| Company | 3Q15<br>Units | 3Q15 Market<br>Share (%) | 2Q15<br>Units |      |
|---------|---------------|--------------------------|---------------|------|
| Samsung | 84,5          | 24%                      | 72,9          | 21%  |
| Apple   | 48            | 14%                      | 47,5          | 14%  |
| Huawei* | 26,5          | 7%                       | 29,6          | 9%   |
| Lenovo* | 19            | 5%                       | 16,2          | 5%   |
| Xiaomi* | 18,3          | 5%                       | 19,1          | 6%   |
| Others  | 159,1         | 45%                      | 156,1         | 46%  |
| TOTAL   | 355,2         | 100%                     | 341,4         | 100% |

[Statista2015]



#### Worldwide Smartphone Sales to End Users by Vendor Q2-2015 vs. Q2-2014

In 1.000 Units

| Company | 2Q152<br>Units | Q15 Market<br>Share (%) | 2Q14<br>Units | 2Q14 Market<br>Share (%) |
|---------|----------------|-------------------------|---------------|--------------------------|
| Samsung | 72,072.5       | 21.9                    | 76,129.2      | 26.2                     |
| Apple   | 48,085.5       | 14.6                    | 35,345.3      | 12.2                     |
| Huawei  | 25,825.8       | 7.8                     | 17,657.7      | 6.1                      |
| Lenovo* | 16,405.9       | 5.0                     | 19,081.2      | 6.6                      |
| Xiaomi  | 16,064.9       | 4.9                     | 12,540.8      | 4.3                      |
| Others  | 151,221.7      | 45.9                    | 129,630.2     | 44.6                     |
| Total   | 329,676.4      | 100.0                   | 290,384.4     | 100.0                    |

Source: [Gartner2015a]

<sup>\*</sup>The results for Lenovo include sales of mobile phones by Lenovo and Motorola both in 2Q15 and 2Q14.



## Worldwide Smartphone Sales in Q2-2013

"Smartphones accounted for 51.8 percent of mobile phone sales in the second quarter of 2013, resulting in smartphone sales surpassing feature phone sales for the first time."

[Gartner2013b]



### **Evolution of Mobile Devices**



#### Development of device capabilities

- Multimedia applications (MP3, radio, video, TV, etc.)
- Possibility to execute 3rd party software
- Sensors (microphone, camera, GPS, ...)
- Data Services (Internet connectivity)
- Short Message Service (SMS)
- Interactive Voice Response (IVR)
- General telephony capabilities



## Evolution of Mobile Devices Examples







⊘ Microoptic

1973



















2010

Google





## Mobile Devices Size

- Everybody wants smaller devices.
- Everybody





## Worldwide Device Shipments by Segment - 2014 View

Worldwide device shipments and projections by segment show a shift in consumer preferences:

In 1,000 Units

| Device Type                                                  | 2012      | 2013      | 2014      | 2015      |
|--------------------------------------------------------------|-----------|-----------|-----------|-----------|
| PC (Desk-based and Notebook)                                 | 341,273   | 296,131   | 276,221   | 261,657   |
| Ultramobile (Thin, light, slate or hybrid, e.g. Chromebooks) | 9,787     | 21,517    | 32,251    | 55,032    |
| Tablet                                                       | 120,203   | 206,807   | 256,308   | 320,964   |
| Mobile Phone                                                 | 1,746,177 | 1,806,964 | 1,862,766 | 1,946,456 |
| Other Ultramobiles<br>(Hybrid and Clamshell)                 | -         | 2,981     | 5,381     | 7,645     |
| TOTAL                                                        | 2,217,440 | 2,334,400 | 2,432,927 | 2,591,753 |

The reason may be an increasing focus on energy efficiency and weight.



# Worldwide Device Shipments by Segment - 2015 View

Worldwide device shipments and projections by segment show a shift in consumer preferences:

| Device Type                               | 2014  | 2015  | 2016  | 2017  |
|-------------------------------------------|-------|-------|-------|-------|
| Traditional PCs (Desk-Based and Notebook) | 277   | 251   | 243   | 233   |
| Ultramobiles (Premium)                    | 37    | 49    | 68    | 89    |
| PC Market                                 | 314   | 300   | 311   | 322   |
| Ultramobiles (Tablets and Clamshells)     | 226   | 214   | 228   | 244   |
| Computing Devices Market                  | 540   | 514   | 539   | 566   |
| Mobile Phones                             | 1,879 | 1,94  | 2,007 | 2,062 |
| Total Devices Market                      | 2,419 | 2,454 | 2,546 | 2,628 |

Note: The *Ultramobile (Premium)* category includes devices such as Microsoft's Windows 8 Intel x86 products and Apple's MacBook Air.

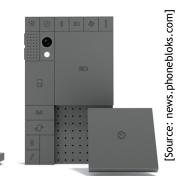
The *Ultramobile (Tablets and Clamshells)* category includes devices such as, iPad, iPad mini, Samsung Galaxy Tab S 10.5, Nexus 7 and Acer Iconia Tab 8.

 The reason may be an increasing focus on energy efficiency and weight.



## "Fair" and ecologically friendly **Mobile Devices**

- Grounded in the idea to develop and market smartphone hardware and software designed and produced with minimal harm to people and planet.
- Strict observation of:
  - Type of raw materials (ecological aspects)
  - Origin of raw materials (political aspects)
  - Lifespan of components and easy repair (durability aspects)
- **Fairphone 1** out of stock
  - **25,000** from the first batch of Fairphones sold in 2013.
  - **35,000** from the second batch of Fairphones on sale in 2014.
- Fairphone 2


[www.fairphone.com/about/]

- Over 15,000 phones ordered
- Delivery to start in December 2015, new orders ship in January 2016

It is "not possible to produce a 100% fair phone yet, but by aiming toward this end seeks to raise awareness among consumers and in the mobile industry." [Wiki2013]













- Introduction
- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
  - Means for I/O



- Categorisation is possible by:
  - Technical characteristics
  - Application aspects
    - Functional completeness (Is the functionality comparable to a desktop PC/Laptop?)
    - Size of the device
    - Security features



## Categorisation of Mobile Devices

**Technical Characteristics** 

- Hardware independence
  - Independent devices
  - Devices with external communication
  - Devices with external security modules
  - Devices with external memory
- Operating system Characteristics
  - Memory security, file security, access control
  - Security module support, secure I/O, program and system integrity



## Categorisation of Mobile Devices Application Aspects 1

- Lifespan of an application
  - Battery consumption, amount of data, and size of memory
  - Data integrity, amount of communication, and costs
- Completeness of the functionality for the enduser
  - Information / Reaction
  - Limitations due to device size
  - Feature Sets



## Categorisation of Mobile Devices

**Application Aspects 2** 

- Device size
  - Small / integrated devices
  - "Pocket-sized"
  - "Tablet-sized"
  - "Laptop-sized"
- Access to the security module
  - Data integrity, encryption
  - Digital signatures
  - Access control, authentication



## Different requirements for different kinds of devices:

|                                      | Mobile Phone | Tablet           | Laptop   |
|--------------------------------------|--------------|------------------|----------|
| Number of<br>"Switch-ons" per<br>day | low          | low              | variable |
| Frequency of use cases               | very high    | rather low       | low      |
| Duration of usage per task           | ?            | short/<br>medium | high     |






- Introduction
- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
  - Means for I/O



### OS - Functional Architecture





### Size of a mobile Device

- The size of a mobile device is considerably determined by its:
  - Input Facilities (e.g. keyboard)
  - Output Facilities (e.g. display)
  - Separation of components (e.g. display in the watch, head-mounted-displays)



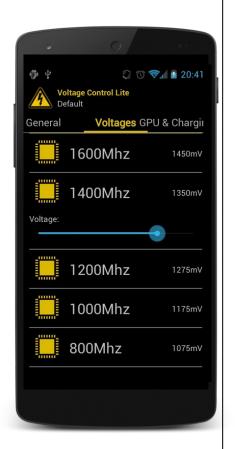


- Introduction
- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
  - Means for I/O



### Accumulators

| Mobile phone            | Standby time<br>(in h)                                              | Talk time<br>(in min)  | Capacity<br>(in mAh)     | Display                                                       |
|-------------------------|---------------------------------------------------------------------|------------------------|--------------------------|---------------------------------------------------------------|
| Nokia 6310<br>(2001)    | 408                                                                 | 360                    | Li-Polymer;<br>1.100 mAh | Graphic<br>96 x 65                                            |
| Nokia N-Gage<br>(2004)  | 240                                                                 | 120                    | Li-Ion;<br>850 mAh       | Color<br>176 x 208<br>4.096 colours                           |
| MDA pro (2005)          | 260                                                                 | 480                    | Li-Polymer;<br>1.620 mAh | Touch TFT<br>640 x 480<br>65.536 colours                      |
| MDA Vario II (2006)     | 200                                                                 | 300                    | Li-Polymer;<br>1.350 mAh | Touch TFT<br>320 x 240<br>65.536 colours                      |
| T-Mobile Ameo (2007)    | 300                                                                 | 240                    | Li-Ion;<br>2200 mAh      | Touch TFT<br>640 x 480<br>65.536 colours                      |
| Apple iPhone 4 (2010)   | 300                                                                 | 420 (3G)<br>- 840 (2G) | Li-Polymer;<br>1420 mAh  | Touch TFT<br>960 x 640<br>16.7m colours                       |
| Apple iPad Air 2 (2014) | Up to 9 hours of web using 3G of (10 hours w                        | data network           | Li-Polymer;<br>7,340 mAh | Touch TFT<br>2048 x 1536<br>16.7m colours                     |
| Apple iPhone 6S (2015)  | Talk time: Up to<br>Internet use: Up to 10<br>10 hours on LTE, up t | O hours on 3G, up to   | Li-Polymer; 1,715<br>mAh | LED-backlit LCD,<br>capacitive<br>touchscreen, 16m<br>colours |




- Introduction
- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
  - Means for I/O

### **Processors**



- Performance increase
  - Higher clock frequency (but frequency scaling typically comes at the price of higher voltage!)
  - Larger on-die-caches (cache memory) built into the CPU ("on die") to reduce memory access time
- Power consumption decrease
  - Processor's core voltage (1995: 3.5 V; 2000: 1.35 V; 2013: 1.0 V)
    - Lower bound is the voltage needed to switch a transistor
    - Quadratic relationship between voltage and power consumption
- Less heat loss
- Power Management
  - triggered by changes of the energy supply



Picture source: "Voltage Control" Application (Google Play Store) by darek.xan



#### **Processors**

#### Overview of Mobile Devices

| Logo | Device                      | Processor                  | Mhz                    | MIPS     |
|------|-----------------------------|----------------------------|------------------------|----------|
|      | Nokia N-Gage<br>(2004)      | ARM7                       | 104                    | ??       |
|      | HTC/T-Mobile<br>MDA (2002)  | Intel StrongARM            | 206                    | 274      |
|      | Apple iPhone 4, iPad (2010) | Apple A4                   | 800<br>(iPad: 1000)    | 2.000    |
|      | Notebook<br>(2006)          | Intel CoreDuo<br>Processor | 2.000                  | < 14.000 |
|      | Notebook<br>(2010)          | Intel Core i7<br>Quad-Core | 3.600                  | > 20.000 |
|      | Apple<br>iPad Air 2 (2014)  | Apple A8X                  | 1.500<br>(Triple-core) | ??       |
|      | Apple iPhone 6S (2015)      | Apple A9                   | 1,800<br>(Dual Core)   | ??       |



- General trade-off between storage on the server vs. storage on the client
- Storage on the client
  - Subscriber Identity Module (SIM)
  - Random Access Memory (RAM)
  - Memory cards
  - Microdrives









- Introduction
- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
    - Liquid-Crystal-Displays (LCD)
    - Organic Light Emitting Diodes (OLED)
  - Means for I/O



## **Display**Liquid-Crystal-Displays (LCD)

- The LCD technology is widespread in the market.
- "Consists of an array of tiny segments (called pixels) that can be manipulated to present information"
- Examples:
  - Dual Scan Twisted Nematic (DSTN)
  - Thin-film Transistor (TFT)



Example: Dynasheet (Toshiba) 1cm, 200g, 2005



- DSTN-Display (Dual Scan Twisted Nematic)
  - Passive matrix
  - LCD displays with passive control have a relatively high latency (generally more than 100 ms). This implies a blurred image with frequently changing picture elements.
- TFT-Displays (Thin Film Transistor)
  - Active (transistor for each pixel)



## **Display**Resolution

| Logo          | Mobile phone             | Display   | Resolution  | Colors |
|---------------|--------------------------|-----------|-------------|--------|
|               | Nokia 6310<br>(2001)     | Graphic   | 96 x 65     | none   |
|               | Siemens S55<br>(2002)    | Color     | 101 x 80    | 256    |
|               | Nokia N-Gage<br>(2004)   | Color     | 176 x 208   | 4.096  |
|               | Samsung E700<br>(2003)   | TFT-Color | 160 x 128   | 65.536 |
| T TO          | MDA III<br>(2004)        | Touch TFT | 320 x 240   | 65.536 |
| To Mobile . D | MDA pro<br>(2005)        | Touch TFT | 640 x 480   | 65.536 |
|               | T-Mobile Ameo<br>(2007)  | Touch TFT | 640 x 480   | 65.536 |
|               | Apple iPhone 4<br>(2010) | Touch TFT | 960 x 640   | 16.7m  |
|               | Apple iPad 2<br>(2010)   | Touch TFT | 1024 x 768  | 16.7m  |
|               | Apple iPad 3<br>(2012)   | Touch TFT | 2048 x 1536 | 16.7m  |
|               | Apple iPad Pro<br>(2015) | Touch TFT | 2732 x 2048 | 16.7m  |



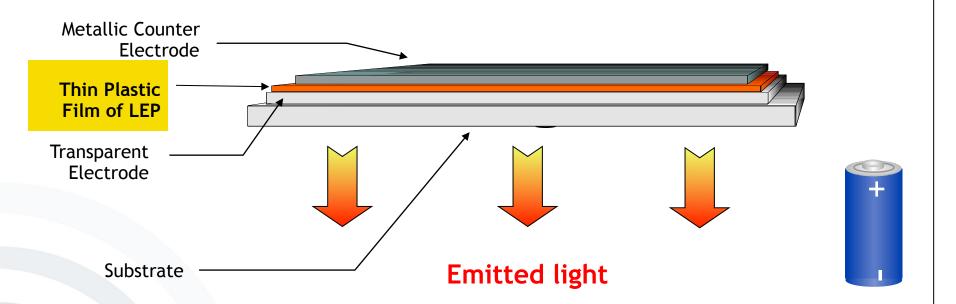
## Organic Light Emitting Diodes (OLED)

- Polymers can convert electric energy to light.
- Complete layer is thinner than 500 nm (0.5 thousandth part of one mm), luminosity approx. 100W electric bulb.
- 180° viewing angle





#### OLED consist of self lighting polymer molecules:


- No background lighting is necessary
- Electric power consumption decreases and longer usage times become possible.
- Space for extra components
- Devices can be thinner and lighter.



### Display

Organic Light Emitting Diodes (OLED)

#### Light Emitting Polymer Device







- Polymers are large molecules widely known as plastics.
- Light Emitting Polymers (LEPs) are special plastic materials that convert electrical power into visible light.
- A thin film of Light Emitting Polymer put between two electrodes will glow ...



## Organic Light Emitting Diodes (OLED)

## **Light Emitting Polymers** convert electrical power into visible light:

electrical power Light Emitting Polymer

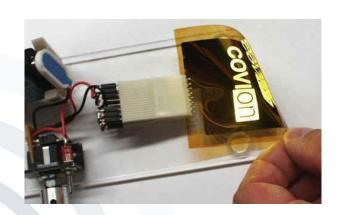
visible light

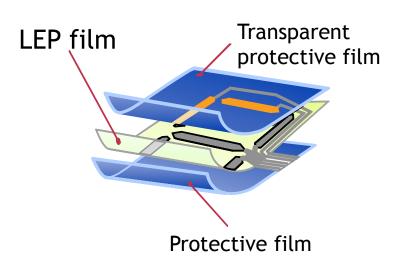


This is related to the fluorescence of polymers where UV-radiation is converted into visible light:

**UV-radiation** 

Fluorescent Polymer


visible light




#### Display

Organic Light Emitting Diodes (OLED)

 Because plastic materials are flexible and robust even non-planar displays can be manufactured ...





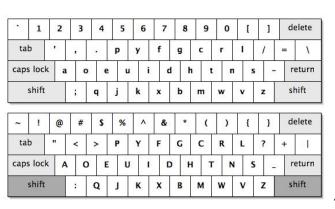


#### Types of OLED

- Two main types (based on the driving electronics)
  - PMOLED (Passive-Matrix OLED)
    - Simpler electronics, no storage capacitor
    - Lower cost
    - Lower lifetime (due to the higher voltage needed)
    - Limited size and resolution
    - Mostly used for simpler displays, e.g. mp3 players, mobile phone sub-displays, etc.
  - AMOLED (Active-Matrix OLED)
    - Contains storage capacitor to maintain the pixel line state
    - No restrictions on size and resolution
    - More costly
    - Used for higher quality screens, such as mobile phones (Blackberry Priv, HTC One A9, Samsung Z3, Microsoft Lumia 950 XL, etc.)



- Introduction
- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
  - Means for I/O
    - Device Input
    - Personal Area Networks (PAN)




- Excursion "standardization battles": QWERTY vs. Dvorak's DSK
- 1868 Christopher Latham Sholes Copyright (goal: minimum key conflicts)
- 1873 sale of QWERTY to E. Remington & Sons
- "Jamming" was a problem until 1979. As a consequence, the ball-shaped head technique was invented.





- De-facto standard, high competition
- 1936 Dvorak's Simplified Keyboard (DSK)
- Goals:
  - Keys which are used most frequently are close to each other
  - Change of hands well balanced
  - Frequent keys preferably with strong fingers
- Fact = We all use QWERTY.
- What did go wrong?



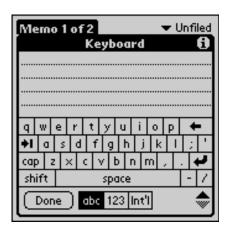


- QWERTY is an example for market failure in the presence of network effects.
- "Worse standard dominates a better standard".
  - **⇒** What is the better standard?
- Further problems: Lock-in, switching costs
- Unfortunately, the case is not as easy!



- Often cited US Navy Research Report of 1944 DSK is more efficient than QWERTY.
  - No official report but a falsely cited internal paper from an officer = Lieutenant Commander August Dvorak!
  - Critics: Methodological biases: Two test persons of different age and abilities
  - Chaos between 108 and 180 hits per minute Many contrasting findings
  - ... the QWERTY keyboard appears to be fast enough for almost all users. If you are just driving about in town you do not need a 500 horse-power V8." (Poole 1997)
- Things are not as easy as they seem to be!
- For more details see: [LiebowMargol1996].




## Currently, the following input solutions for mobile devices exist:

- QWERTY-Keyboard
- Palm-Graffiti
- Tegic T9
- Octave
- SWYPE
- Recognition of handwriting
- Speech recognition

# © Palm © Microsoft © Walk PC

## mobile susiness

## Input QWERTY-Keyboards









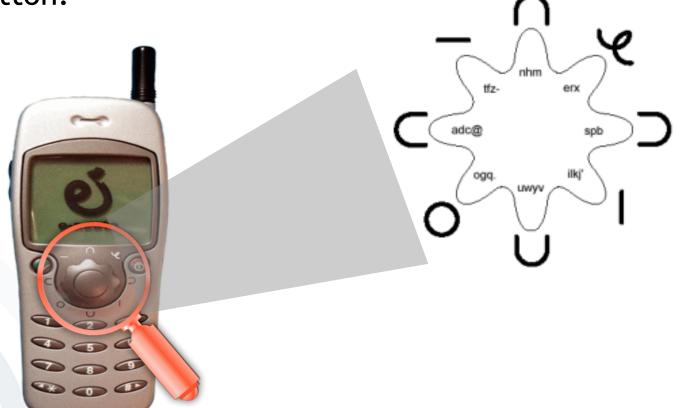




- Handwriting recognition software
- Artificial script, based on upper-case characters
- Can be drawn blindly with a stylus on a touch-sensitive panel

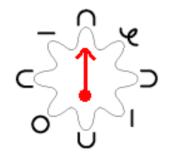




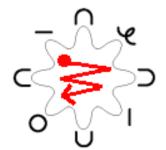

## Input Tegic Communications T9

- T9 (*Text on 9 keys*) is a predictive text technology developed by Tegic Communications.
- Widely used by: LG, Samsung, Nokia, Siemens, Sony Ericsson, Sanyo
- Uses a dictionary of words, which is used to look up all the possible words, corresponding to the sequence of keypresses.
- Available in 27 languages

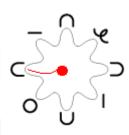




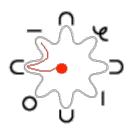

 Characters can be input by either pen or button.



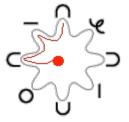




#### Input Octave

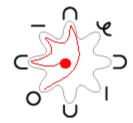



"capital letters"




"reset"




a·



at·



ath·ens



atmo·sphere

Fiatly







[http://swypeinc.com/product.html]

- Input by sliding a finger or stylus from letter to letter, lifting only between words
- Word is guessed using error-correcting algorithms and language model
- Developed by Swype Inc.
- First commercially available on Samsung Omnia
   II (on Windows Mobile 6.5), also available for Android



## Input Speech Recognition

- Translation of spoken words into text
- Supports various applications, e.g. for
  - initiation of phone calls
  - message composition
  - **...**
- Originally performed directly on PDAs/smartphones
- Nowadays usually provided as a cloud service
  - Voice is recorded and compressed
  - Sound file is sent to a server where the actual recognition process is performed
  - Text is sent back to smartphone
- Examples
  - Apple Siri
  - Google Now
  - Samsung S-Voice
  - Windows Phone Voice Control
  - Blackberry 10 Voice control
  - •
- May become important feature for smart watches
- In contrast, term *voice recognition* refers to *identity* of the speaker, not *what* is said.













- Introduction
- Categorisation of Mobile Devices
- Components of Mobile Devices
  - Accumulators
  - Processors, Memory, and Storage
  - Display
  - Means for I/O
    - Device Input
    - Personal Area Networks (PAN)



- Personal environment, short range
- Purpose: Connection of devices in short range, for example mobile device and printer.
- Replaces cable-connections:
  - Infrared Data Association (IrDA)
  - Bluetooth
  - Near Field Communication (NFC)



- IrDA: Infrared Data Association (1993):
- Standardized infrared-protocols
- Asynchronous, serial connections up to 115 kbit/s (Serial Infrared) or 4 Mbit/s (Fast Infrared)
- Point-to-Point
- Protocol-family for various purposes





- Exemplary applications:
  - Transmission of mobile business cards
  - Sales data extraction from cigarette vending machines
  - Connection between mobile and laptop
  - Wireless printing
  - Remote control for consumer electronics, e.g. TVs



## Personal Area Network (PAN) Infrared

- Attributes:
  - Wireless
  - Range of up to 10 meters
  - Illumination-angle 15° 30°
- Disadvantages:
  - Sounding: If the infrared-ray misses the target
  - Optical connection required
  - Short interruptions of the optical connection,
     e.g. between laptop and mobile phone in trains,
     lead to complete network-interruption.



Bluetooth

- Frequency range of 2.4 GHz
- Simple and cheap possibility to set up ad-hoc networks of limited range (up to 10 meters)
- No official standard, but de-facto-standard
- Consortium: Ericsson, Intel, IBM, Nokia, Toshiba, etc.
- v4.2 (2014) improved speed, privacy, and connectivity (support for the Internet of Things)
- Broadly supported by related industries:
  - Computer hardware
  - Software
  - Consumer electronics





Popular Bluetooth Applications

Sound transmission (to earphones, headphones or Hi-Fi equipment)











**Bluetooth Applications** 

- Connection of periphery-devices (headsets, keyboards, mice, etc.)
- Setting up of ad-hoc networks for spontaneous data exchange
- Ad-hoc connection of different networks (e.g. laptop ⇔ mobile or phone ⇔ GSM ⇔ net)
- Applications similar to applications based on infrared technology
- Weaknesses of infrared technology were overcome
  - Increased bandwidth (up to 865.2KBit/s)
  - No optical connection between devices necessary
  - Expanded range (up to 10m)
  - Allows setting up of ad-hoc networks instead of point-topoint connections



Near Field Communication (NFC)

- Enables radio communication between
  - two NFC devices,
  - an NFC device and an (unpowered) tag.
- NFC based on existing radio-frequency identification (RFID) standards
- Range: 10 cm or less
- Transfer rates between 106 kbit/s and 424 kbit/s
- Three major modes of NFC
  - Reader/Writer Mode
  - Card Emulation Mode (referred to as "Digital Wallet")
  - Peer-to-Peer Mode



#### Literature



- [Burckhardt2001] Burckhardt, J. et al. (2001), Pervasive Computing, München
- [Covion2006] Covion (2006), www.covion.de, accessed 2006-10-20
- [Gartner2006] Gartner Group (2006), www.gartner.com/press\_releases/ asset\_152911\_11.html, accessed 2006-10-20
- [Gartner2013a] Gartner Group (2013),
   Gartner Says Worldwide Mobile Phone Sales Declined 1.7 Percent in 2012,
   http://www.gartner.com/newsroom/id/2335616, accessed 2013-11-20
- [Gartner2013b] Gartner Group (2013),
   Gartner Says Smartphone Sales Grew 46.5 Percent in Second Quarter of 2013 and Exceeded Feature Phone Sales for First Time, http://www.gartner.com/newsroom/id/2573415, accessed 2013-11-20
- [Gartner2013c] Gartner Group (2013),
   Gartner Says Worldwide PC, Tablet and Mobile Phone Shipments to Grow 4.5 Percent in 2013 as Lower-Priced Devices Drive Growth, http://www.gartner.com/newsroom/id/2610015, accessed 2013-11-20
- [Gartner2015] Gartner Group (2015),
   Gartner Says Emerging Markets Drove Worldwide Smartphone Sales to 19 Percent Growth in First Quarter of 2015, <a href="https://www.gartner.com/newsroom/id/3061917">https://www.gartner.com/newsroom/id/3061917</a>
- [Gartner2015a] Gartner Group (2015), Gartner Says Worldwide Smartphone Sales Recorded Slowest Growth Rate Since 2013, https://www.gartner.com/newsroom/id/3115517
- [Gartner2015b] Gartner Group (2015), Gartner Says Worldwide Device Shipments to Grow 1.5 Percent, to Reach 2.5 Billion Units in 2015, https://www.gartner.com/newsroom/id/3088221
- [Heise15] Heise online, Fairphone 2: 15.000 Vorbesteller für modular aufgebautes, fair hergestelltes Smartphone, http://www.heise.de/newsticker/meldung/Fairphone-2-15-000-Vorbesteller-fuer-modular-aufgebautes-fair-hergestelltes-Smartphone-2829845.html



#### Literature

- [LiebowMargol1996] Liebowitz, S. and Margolis S. (1996), The fable of the keys, Journal of Law and Economics, Vol. 33, pp. 1 - 25
- [Posegga2001] Posegga (2001), WiTness
- [T92006] T9 (2006), www.t9.com, accessed 2006-10-20.
- [Tage2013] Das Handy für das gute Gewissen, http://www.tagesschau.de/wirtschaft/fair-smartphone100.html, accessed 2013-11-26.
- [Wiki2013] Wikipedia: Fairphone, http://en.wikipedia.org/wiki/Fairphone, accessed 2013-11-26.
- [Statista2014] http://de.statista.com/statistik/daten/studie/184213/umfrage/absatz-von-mobiltelefonen-weltweit-nach-quartalen/, accessed 2014-10-07.
- [Statista2015] Absatz der Hersteller von Smartphones weltweit vom 4. Quartal 2009 bis zum 3. Quartal 2015 (in Millionen Stück). http://de.statista.com/statistik/daten/studie/173048/umfrage/weltweiter-absatz-der-smartphone-hersteller-nach-quartalen/, accessed 2015-11-06.